Skip to main content
Log in

A review on the applications of micro-/mini-channels for battery thermal management

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

This review of the literature explores the potentials of liquid micro-/mini-channels to reduce operating temperatures and make temperature distributions more uniform in batteries. First, a classification and an overview of the various methods of battery thermal management are presented. Then, different types of lithium-ion batteries and their advantages and disadvantages are introduced, and the components of batteries are described in detail. The studies conducted on the performance of micro-/mini-channels for cooling all types of rectangular and cylindrical batteries are reviewed, and the key finding of these studies is presented. It is shown that, in general, using counterflow configuration creates a rather uniform temperature distribution in the battery cell and keeps the maximum temperature difference below \(5^\circ \mathrm{C}\). The lowest battery maximum temperature is obtained for parallel and counterflow configurations in the straight and U-turn channels, respectively. In a parallel configuration, the peak point of the battery temperature is in the outlet area. However, in the counter-flow configuration, it occurs in the central region of the battery module. The survey of the literature further reveals that proper channel paths and flow configurations keep the battery maximum temperature within the safe range of \(25\,^\circ {\text{C}} < T_{\max } < 40\,^\circ {\text{C}}\). For such flow configurations, the pressure drop remains minimally affected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

A :

Surface area (m2)

\({D}_{\mathrm{h}}\) :

Hydraulic diameter of the channel (µm)

j/f :

Ratio of surface heat transfer to surface friction coefficient

L :

Length of channel (mm)

MTD:

Maximum temperature difference (K)

n :

Number of channels

PCM:

Phase-change material

NSGA-II:

Non-dominant genetic algorithm

PEC:

Overall thermal performance evaluation criterion

Re:

Reynolds number

RSM:

Response surface methodology

STD:

Standard temperature deviation

\({T}_{\mathrm{in}}\) :

Inlet temperature of fluid (K)

\({T}_{\mathrm{max}}\) :

Maximum temperature of fluid (K)

\({V}_{\mathrm{in}}\) :

Inlet flow velocity (\(\mathrm{m }{\mathrm{s}}^{-1}\))

\(\Delta p\) :

Pressure drop (Pa)

\(\Delta T\) :

Temperature difference (K)

α :

The ratio of the inner surface to the total lateral surface of the channels

\(\Delta\) :

Absolute deviation

\(\varphi\) :

Volume fraction

\(h\) :

Hydraulic

\(\mathrm{in}\) :

Inlet

\(\mathrm{max}\) :

Maximum

References

  1. Zubi G, Dufo-López R, Carvalho M, Pasaoglu G. The lithium-ion battery: state of the art and future perspectives. Renew Sust Energy Rev. 2018;89:292–308.

    Google Scholar 

  2. Zhao G, Wang X, Negnevitsky M, Zhang H. A review of air-cooling battery thermal management systems for electric and hybrid electric vehicles. J Power Sources. 2021;501:230001.

    CAS  Google Scholar 

  3. Chombo PV, Laoonual Y. A review of safety strategies of a Li-ion battery. J Power Sources. 2020;478:228649.

    CAS  Google Scholar 

  4. Waldmann T, Wilka M, Kasper M, Fleischhammer M, Wohlfahrt-Mehrens M. Temperature dependent ageing mechanisms in Lithium-ion batteries–A Post-Mortem study. J Power Sources. 2014;262:129–35.

    CAS  Google Scholar 

  5. Warner JT. The handbook of lithium-ion battery pack design: chemistry, components, types and terminology. Amsterdam: Elsevier Science; 2015. p. 115–30.

    Google Scholar 

  6. Sarvar-Ardeh S, Rafee R, Rashidi S. Performance enhancement in double-layer tapered microchannels by changing the wall hydrophobicity and working fluid. J Therm Anal Calorim. 2022. https://doi.org/10.1007/s10973-022-11681-1.

    Article  Google Scholar 

  7. Dixit T, Ghosh I. Review of micro-and mini-channel heat sinks and heat exchangers for single phase fluids. Renew Sustain Energy Rev. 2015;41:1298–311.

    Google Scholar 

  8. Sarvar-Ardeh S, Rafee R, Rashidi S. Hybrid nanofluids with temperature-dependent properties for use in double-layered microchannel heat sink; hydrothermal investigation. J Taiwan Inst Chem Eng. 2021;124:53–62.

    CAS  Google Scholar 

  9. Shi M, Yu X, Tan Y, Wang X, Zhang X, Li J. Thermal performance of insulated gate bipolar transistor module using microchannel cooling base plate. Appl Therm Eng. 2022;201:117718.

    Google Scholar 

  10. Beni SB, Bahrami A, Salimpour MR. Design of novel geometries for microchannel heat sinks used for cooling diode lasers. Int J Heat Mass Transf. 2017;112:689–98.

    Google Scholar 

  11. Sarvar-Ardeh S, Rafee R, Rashidi S. A comparative study on the effects of channel divergence and convergence on the performance of two-layer microchannels. Exp Tech. 2022. https://doi.org/10.1007/s40799-022-00546-9.

    Article  Google Scholar 

  12. Sarvar-Ardeh S, Rafee R, Rashidi S. Heat transfer and entropy generation of hybrid nanofluid inside the convergent double-layer tapered microchannel. Math Meth Appl Sci. 2022. https://doi.org/10.1002/mma.8286.

    Article  Google Scholar 

  13. Gilmore N, Timchenko V, Menictas C. Nicholas Gilmore, Victoria Timchenko, Chris Menictas, microchannel cooling of concentrator photovoltaics: a review. Renew Sustain Energ Rev. 2018;90:1041–59.

    Google Scholar 

  14. Sarvar-Ardeh S, Rafee R, Rashidi S. Effects of convergence and superhydrophobicity on the hydrothermal features of the tapered double-layer microchannel. Int J Therm Sci. 2022;181:107745.

    Google Scholar 

  15. Bhatti MM, Bég OA, Abdelsalam SI. Computational framework of magnetized MgO–Ni/water-based stagnation nanoflow past an elastic stretching surface: application in solar energy coatings. Nanomaterials. 2022;12:1049. https://doi.org/10.3390/nano12071049.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Xiong T, Liu G, Huang S, Yan G, Yu J. Two-phase flow distribution in parallel flow mini/micro-channel heat exchangers for refrigeration and heat pump systems: a comprehensive review. Appl Therm Eng. 2022;201:117820.

    CAS  Google Scholar 

  17. Engelbrecht N, Everson RC, Bessarabov D, Kolb G. Microchannel reactor heat-exchangers: a review of design strategies for the effective thermal coupling of gas phase reactions. Chem Eng Proc-Process Intensif. 2020;157:108164.

    CAS  Google Scholar 

  18. Fan Y, Zhao X, Li G, Cheng Y, Zhou J, Yu M, Du Z, Ji J, Zhu Z, Diallo T, Ma X. Analytical and experimental study of an innovative multiple-throughout-flowing micro-channel-panels-array for a solar-powered rural house space heating system. Energy. 2019;171:566–80.

    Google Scholar 

  19. Abdelsalam SI, Mekheimer KS, Zaher AZ. Dynamism of a hybrid Casson nanofluid with laser radiation and chemical reaction through sinusoidal channels. Waves Random Complex Media. 2022. https://doi.org/10.1080/17455030.2022.2058714.

    Article  Google Scholar 

  20. Abdelsalam SI, Zaher AZ. On behavioral response of ciliated cervical canal on the development of electroosmotic forces in spermatic fluid. Math Model Nat Phenom. 2022;17:27. https://doi.org/10.1051/mmnp/2022030.

    Article  Google Scholar 

  21. Alsharif AM, Abdellateef AI, Elmaboud YA, Abdelsalam SI. Performance enhancement of a DC-operated micropump with electroosmosis in a hybrid Nanofluid: fractional Cattaneo heat flux problem. Appl Math Mech Engl Ed. 2022;43:931–44.

    Google Scholar 

  22. Thumma T, Mishra SR, Abbas MA, Bhatti MM, Abdelsalam SI. Three-dimensional nanofluid stirring with non-uniform heat source/sink through an elongated sheet. Appl Math Comput. 2022;421:126927.

    Google Scholar 

  23. Mekheimer KS, Abo-Elkhair RE, Abdelsalam SI, Ali KK, Moawad AMA. Biomedical simulations of nanoparticles drug delivery to blood hemodynamics in diseased organs: synovitis problem. Int Commun Heat Mass Transfer. 2022;130:105756.

    CAS  Google Scholar 

  24. Kandlikar SG, Grande WJ. Evolution of microchannel flow passages–thermohydraulic performance and fabrication technology. Heat Transf Eng. 2003;24:3–17.

    CAS  Google Scholar 

  25. Chen Y, Kang Y, Zhao Y, Wang L, Liu J, Li Y, Liang Z, He X, Li X, Tavajohi N, Li B. A review of lithium-ion battery safety concerns: The issues, strategies, and testing standards. J Energ Chem. 2021;59:83–99.

    CAS  Google Scholar 

  26. Liu H, Wei Z, He W, Zhao J. Thermal issues about Li-ion batteries and recent progress in battery thermal management systems: a review. Energy Convers Manag. 2017;150:304–30.

    CAS  Google Scholar 

  27. Thakur AK, Prabakaran R, Elkadeem MR, Sharshir SW, Arıcı M, Wang C, Zhao W, Hwang JY, Saidur R. A state of art review and future viewpoint on advance cooling techniques for Lithium–ion battery system of electric vehicles. J Energy Storage. 2020;32:101771.

    Google Scholar 

  28. An Z, Jia L, Ding Y, Dang C, Li X. J Power Sources 2017; 26:391-412.

  29. Deng Y, Feng C, Jiaqiang E, Zhu H, Chen J, Wen M, Yin H. Effects of different coolants and cooling strategies on the cooling performance of the power lithium ion battery system: a review. Appl Therm Eng. 2018;142:10–29.

    CAS  Google Scholar 

  30. Wu W, Wang S, Wu W, Chen K, Hong S, Lai Y. A critical review of battery thermal performance and liquid based battery thermal management. Energy Convers Manag. 2019;182:262–81.

    Google Scholar 

  31. Kalaf O, Solyali D, Asmael M, Zeeshan Q, Safaei B, Askir A. Experimental and simulation study of liquid coolant battery thermal management system for electric vehicles: A review. Int J Energy Res. 2021;45:6495–517.

    Google Scholar 

  32. Zhao R, Zhang S, Liu J, Gu J. A review of thermal performance improving methods of lithium ion battery: electrode modification and thermal management system. J Power Sources. 2015;299:557–77.

    CAS  Google Scholar 

  33. Xia GD, Cao L, Bi GL. A review on battery thermal management in electric vehicle application. J Power Sources. 2017;367:90–105.

    CAS  Google Scholar 

  34. Choudhari VG, Dhoble AS, Sathe TM. A review on effect of heat generation and various thermal management systems for lithium ion battery used for electric vehicle. J Energy Storage. 2020;32:101729.

    Google Scholar 

  35. Kim J, Oh J, Lee H. Review on battery thermal management system for electric vehicles. Appl Therm Eng. 2019;149:192–212.

    Google Scholar 

  36. Liu Y, Yang S, Guo B, Deng C. Numerical analysis and design of thermal management system for lithium ion battery pack using thermoelectric coolers. Adv Mech Eng. 2014;6:1–8.

    CAS  Google Scholar 

  37. Manthiram A. An outlook on lithium ion battery technology. ACS Cent Sci. 2017;3:1063–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Kecili R, Arli G, Hussain CM. Future of analytical chemistry with graphene. In: Hussain CM, editor. Analytical applications of graphene for comprehensive analytical chemistry. Amsterdam: Elsevier; 2020. p. 355–89.

    Google Scholar 

  39. Qi W, Shapter JG, Wu Q, Yin T, Gao G, Cui D. Nanostructured anode materials for lithium-ion batteries: principle, recent progress and future perspectives. J Mater Chem A. 2017;5:19521–40.

    CAS  Google Scholar 

  40. Blomgren GE. The development and future of lithium ion batteries. J Electrochem Soc. 2016;164:A5019.

    Google Scholar 

  41. Littler DJ. Electrical systems and equipment: incorporating modern power system practice. Pergamon. 1992. https://doi.org/10.1016/C2009-0-16016-6.

    Article  Google Scholar 

  42. Yuan S, Chang C, Zhang J, Liu Y, Qian X. Experimental investigation of a micelle encapsulator F-500 on suppressing lithium ion phosphate batteries fire and rapid cooling. J Loss Prev Process Ind. 2022;79:104816.

    CAS  Google Scholar 

  43. Jaguemont J, Van Mierlo J. A comprehensive review of future thermal management systems for battery-electrified vehicles. J Energy Storage. 2020;31:101551.

    Google Scholar 

  44. Huang W, Feng X, Han X, Zhang W, Jiang F. Questions and answers relating to lithium-ion battery safety issues. Cell Rep Phy Sci. 2021;2:100285.

    CAS  Google Scholar 

  45. Lindgren J, Lund PD. Effect of extreme temperatures on battery charging and performance of electric vehicles. J Power Sources. 2016;328:37–45.

    CAS  Google Scholar 

  46. Lu Z, Yu XL, Wei LC, Cao F, Zhang LY, Meng XZ, Jin LW. A comprehensive experimental study on temperature-dependent performance of lithium-ion battery. Appl Therm Eng. 2019;158:113800.

    CAS  Google Scholar 

  47. Bandhauer TM, Garimella S, Fuller TF. A critical review of thermal issues in lithium-ion batteries. J Electrochem Soc. 2011;158:R1–25.

    CAS  Google Scholar 

  48. Mohammadian SK, He YL, Zhang Y. Internal cooling of a lithium-ion battery using electrolyte as coolant through microchannels embedded inside the electrodes. J Power Sources. 2015;293:458–66.

    CAS  Google Scholar 

  49. Mohammadian SK, Zhang Y. Improving wettability and preventing Li-ion batteries from thermal runaway using microchannels. Int J Heat Mass Transf. 2018;118:911–8.

    CAS  Google Scholar 

  50. Pan M, Zhong X, Dong G, Huang P. Experimental study of the heat dissipation of battery with a manifold micro-channel heat sink. Appl Therm Eng. 2019;163:114330.

    Google Scholar 

  51. Pan M, Hu M. Numerical simulation of manifold microchannel heat sinks for thermal management in a Li-ion battery. Chem Eng Tech. 2020;43:2501–13.

    CAS  Google Scholar 

  52. Xu Z, Xu J, Guo Z, Wang H, Sun Z, Mei X. Design and optimization of a novel microchannel battery thermal management system based on digital twin. Energies. 2022;15:1421.

    CAS  Google Scholar 

  53. Rao Z, Zhang X. Investigation on thermal management performance of wedge-shaped microchannels for rectangular Li-ion batteries. Int J Energy Research. 2019;43:3876–90.

    CAS  Google Scholar 

  54. Patil MS, Seo JH, Panchal S, Jee SW, Lee MY. Investigation on thermal performance of water-cooled Li-ion pouch cell and pack at high discharge rate with U-turn type microchannel cold plate. Int J Heat Mass Transf. 2020;155:119728.

    CAS  Google Scholar 

  55. Wang N, Li C, Li W, Chen X, Li Y, Qi D. Heat dissipation optimization for a serpentine liquid cooling battery thermal management system: An application of surrogate assisted approach. J Energy Storage. 2021;40:102771.

    Google Scholar 

  56. Jahanbakhshi A, Nadooshan AA, Bayareh M. Cooling of a lithium-ion battery using microchannel heatsink with wavy microtubes in the presence of nanofluid. J Energy Storage. 2022;49:104128.

    Google Scholar 

  57. Azizi Z, Barzegarian R, Behvandi M. Design-expert aided thermohydraulic assessment of a nanofluid-cooled cylindrical microchannel heat sink: Possible application for thermal management of electric vehicle batteries. Sust Energ Tech Assess. 2022;50:101876.

    Google Scholar 

  58. Wei L, Jia L, An Z, Dang C. Experimental study on thermal management of cylindrical Li-ion battery with flexible microchannel plates. J Therm Sci. 2020;29:1001–9.

    CAS  Google Scholar 

  59. Huo Y, Rao Z, Liu X, Zhao J. Investigation of power battery thermal management by using mini-channel cold plate. Energy Convers Manag. 2015;89:387–95.

    Google Scholar 

  60. Chen Y, Chen K, Dong Y, Wu X. Bidirectional symmetrical parallel mini-channel cold plate for energy efficient cooling of large battery packs. Energy. 2022;242:122553.

    Google Scholar 

  61. Xu X, Li W, Xu B, Qin J. Numerical study on a water cooling system for prismatic LiFePO4 batteries at abused operating conditions. Appl Energy. 2019;250:404–12.

    CAS  Google Scholar 

  62. Li W, Zhuang X, Xu X. Numerical study of a novel battery thermal management system for a prismatic Li-ion battery module. Energy Proc. 2019;158:4441–6.

    CAS  Google Scholar 

  63. Monika K, Chakraborty C, Roy S, Dinda S, Singh SA, Datta SP. An improved mini-channel based liquid cooling strategy of prismatic LiFePO4 batteries for electric or hybrid vehicles. J Energy Storage. 2021;35:102301.

    Google Scholar 

  64. Lan C, Xu J, Qiao Y, Ma Y. Thermal management for high power lithium-ion battery by minichannel aluminum tubes. Appl Therm Eng. 2016;101:284–92.

    CAS  Google Scholar 

  65. Xu J, Lan C, Qiao Y, Ma Y. Prevent thermal runaway of lithium-ion batteries with minichannel cooling. Appl Therm Eng. 2017;110:883–90.

    CAS  Google Scholar 

  66. Tang A, Li J, Lou L, Shan C, Yuan X. Optimization design and numerical study on water cooling structure for power lithium battery pack. Appl Therm Eng. 2019;159:113760.

    Google Scholar 

  67. Monika K, Chakraborty C, Roy S, Dinda S, Singh SA, Datta SP. Parametric investigation to optimize the thermal management of pouch type lithium-ion batteries with mini-channel cold plates. Int J Heat Mass Transf. 2021;164:120568.

    CAS  Google Scholar 

  68. Qian Z, Li Y, Rao Z. Thermal performance of lithium-ion battery thermal management system by using mini-channel cooling. Energy Convers Manag. 2016;126:622–31.

    CAS  Google Scholar 

  69. An Z, Shah K, Jia L, Ma Y. A parametric study for optimization of minichannel based battery thermal management system. Appl Therm Eng. 2019;154:593–601.

    Google Scholar 

  70. Fang Y, Shen J, Zhu Y, Ye F, Li K, Su L. Investigation on the transient thermal performance of a mini-channel cold plate for battery thermal management. J Therm Sci. 2021;30:914–25.

    Google Scholar 

  71. Kong W, Zhu K, Lu X, Jin J, Ni M. Enhancement of lithium-ion battery thermal management with the divergent-shaped channel cold plate. J Energy Storage. 2021;42:103027.

    Google Scholar 

  72. Li C, Li Y, Srinivaas S, Zhang J, Qu S, Li W. Mini-channel liquid cooling system for improving heat transfer capacity and thermal uniformity in battery packs for electric vehicles. ASME J Electrochem Energy Convers Storage. 2021;18:030905.

    CAS  Google Scholar 

  73. Chen S, Zhang G, Zhu J, Feng X, Wei X, Ouyang M, Dai H. Multi-objective optimization design and experimental investigation for a parallel liquid cooling-based Lithium-ion battery module under fast charging. Appl Therm Eng. 2022;211:118503.

    CAS  Google Scholar 

  74. Vajravel LV, Swaminathan SK, Baskaran S, Sekar RK. Experimental investigations on heat transfer in a new minichannel heat sink. Int J Therm Sci. 2019;140:144–53.

    Google Scholar 

  75. Chen K, Chen Y, Song M, Wang S. Multi-parameter structure design of parallel mini-channel cold plate for battery thermal management. Int J Energy Res. 2020;44:4321–34.

    Google Scholar 

  76. Panchal S, Khasow R, Dincer I, Agelin-Chaab M, Fraser R, Fowler M. Thermal design and simulation of mini-channel cold plate for water cooled large sized prismatic lithium-ion battery. Appl Therm Eng. 2017;122:80–90.

    CAS  Google Scholar 

  77. Panchal S, Khasow R, Dincer I, Agelin-Chaab M, Fraser R, Fowler M. Numerical modeling and experimental investigation of a prismatic battery subjected to water cooling. Num Heat Transf Part A Appl. 2017;71:626–37.

    CAS  Google Scholar 

  78. Jarrett A, Kim IY. Design optimization of electric vehicle battery cooling plates for thermal performance. J Power Sources. 2011;196:10359–68.

    CAS  Google Scholar 

  79. Deng T, Zhang G, Ran Y. Study on thermal management of rectangular Li-ion battery with serpentine-channel cold plate. Int J Heat Mass Transf. 2018;125:143–52.

    CAS  Google Scholar 

  80. Sheng L, Su L, Zhang H, Li K, Fang Y, Ye W, Fang Y. Numerical investigation on a lithium ion battery thermal management utilizing a serpentine-channel liquid cooling plate exchanger. Int J Heat Mass Transf. 2019;141:658–68.

    Google Scholar 

  81. Dong F, Song D, Ni J. Investigation of the effect of U-shaped mini-channel structure on the thermal performance of liquid-cooled prismatic batteries. Num Heat Transf Part A Appl. 2020;77:105–20.

    Google Scholar 

  82. Dong F, Cheng Z, Song D, Ni J. Investigation and optimization on cooling performance of serial-parallel mini-channel structure for liquid-cooled soft pack batteries. Num Heat Transf Part A Appl. 2021;80:368–87.

    CAS  Google Scholar 

  83. Li J, Zuo W, Jiaqiang E, Zhang Y, Li Q, Sun K, Zhou K, Zhang G. Multi-objective optimization of mini U-channel cold plate with SiO2 nanofluid by RSM and NSGA-II. Energy. 2022;242:123039.

    CAS  Google Scholar 

  84. Zuo W, Zhang Y, Jiaqiang E, Li J, Li Q, Zhang G. Performance comparison between single S-channel and double S-channel cold plate for thermal management of a prismatic LiFePO4 battery. Renew Energ. 2022;192:46–57.

    CAS  Google Scholar 

  85. Kalkan O, Celen A, Bakirci K, Dalkilic AS. Experimental investigation of thermal performance of novel cold plate design used in a Li-ion pouch-type battery. Appl Therm Eng. 2021;191:116885.

    Google Scholar 

  86. Liu H, Shi H, Shen H, Xie G. The performance management of a Li-ion battery by using tree-like mini-channel heat sinks: experimental and numerical optimization. Energy. 2019;189:116150.

    Google Scholar 

  87. Deng T, Ran Y, Zhang G, Chen X, Tong Y. Design optimization of bifurcating mini-channels cooling plate for rectangular Li-ion battery. Int J Heat Mass Transf. 2019;139:963–73.

    Google Scholar 

  88. Deng T, Ran Y, Zhang G, Yin Y. Novel leaf-like channels for cooling rectangular lithium ion batteries. Appl Therm Eng. 2019;150:1186–96.

    CAS  Google Scholar 

  89. Wang J, Liu X, Liu F, Liu Y, Wang F, Yang N. Numerical optimization of the cooling effect of the bionic spider-web channel cold plate on a pouch lithium-ion battery. Case Stud Therm Eng. 2021;26:101124.

    Google Scholar 

  90. Monika K, Chakraborty C, Roy S, Sujith R, Datta SP. A numerical analysis on multi-stage Tesla valve based cold plate for cooling of pouch type Li-ion batteries. Int J Heat Mass Transf. 2021;177:121560.

    Google Scholar 

  91. Kalkan O, Celen A, Bakirci K. Multi-objective optimization of a mini channeled cold plate for using thermal management of a Li-Ion battery. Energy. 2022;251:123949.

    Google Scholar 

  92. Shen J, Wang Y, Yu G, Li H. Thermal management of prismatic lithium-ion battery with minichannel cold plate. J Energ Eng. 2020;146(1):04019033.

    Google Scholar 

  93. Li Y, Zhou Z, Wu WT. Three-dimensional thermal modeling of Li-ion battery cell and 50 V Li-ion battery pack cooled by mini-channel cold plate. Appl Therm Eng. 2019;147:829–40.

    CAS  Google Scholar 

  94. Chen S, Peng X, Bao N, Garg A. A comprehensive analysis and optimization process for an integrated liquid cooling plate for a prismatic lithium-ion battery module. Appl Therm Eng. 2019;156:324–39.

    Google Scholar 

  95. Karthik A, Kalita P, Garg A, Gao L, Chen S, Peng X. A novel MOGA approach for power saving strategy and optimization of maximum temperature and maximum pressure for liquid cooling type battery thermal management system. Int J Green Energy. 2021;18:80–9.

    CAS  Google Scholar 

  96. Jin LW, Lee PS, Kong XX, Fan Y, Chou SK. Ultra-thin minichannel LCP for EV battery thermal management. Appl Energy. 2014;113:1786–94.

    CAS  Google Scholar 

  97. Guo Z, Xu Q, Zhao S, Zhai S, Zhao T, Ni M. A new battery thermal management system employing the mini-channel cold plate with pin fins. Sustain Energy Tech Assess. 2022;51:101993.

    Google Scholar 

  98. Monika K, Datta SP. Comparative assessment among several channel designs with constant volume for cooling of pouch-type battery module. Energy Convers Manag. 2022;251:114936.

    CAS  Google Scholar 

  99. Huang Y, Mei P, Lu Y, Huang R, Yu X, Chen Z, Roskilly AP. A novel approach for Lithium-ion battery thermal management with streamline shape mini channel cooling plates. Appl Therm Eng. 2019;157:113623.

    Google Scholar 

  100. Yang X, Wei L, Cao F, Zhang L, Lu Z, Meng X, Jin L. A parametric study of laminar convective heat transfer in fractal minichannels with hexagonal fins. Int J Energy Res. 2020;44:9382–98.

    CAS  Google Scholar 

  101. Zhang Y, Zuo W, Jiaqiang E, Li J, Li Q, Sun K, Zhou K, Zhang G. Performance comparison between straight channel cold plate and inclined channel cold plate for thermal management of a prismatic LiFePO4 battery. Energy. 2022;248:123637.

    CAS  Google Scholar 

  102. Amalesh T, Narasimhan NL. Introducing new designs of minichannel cold plates for the cooling of Lithium-ion batteries. J Power Sources. 2020;479:228775.

    CAS  Google Scholar 

  103. Salimi A, Khoshvaght-Aliabadi M, Rashidi S. On thermal management of pouch type lithium-ion batteries by novel designs of wavy minichannel cold plates: Comparison of co-flow with counter-flow. J Energy Storage Part B. 2022;52:104819.

    Google Scholar 

  104. Zuo S, Chen S, Yin B. Performance analysis and improvement of lithium-ion battery thermal management system using mini-channel cold plate under vibration environment. Int J Heat Mass Transf. 2022;193:122956.

    Google Scholar 

  105. Fan Y, Lee PS, Chua BW. Investigation on the influence of edge effect on flow and temperature uniformities in cylindrical oblique-finned minichannel array. Int J Heat Mass Transf. 2014;70:651–63.

    Google Scholar 

  106. Zhao J, Rao Z, Li Y. Thermal performance of mini-channel liquid cooled cylinder based battery thermal management for cylindrical lithium-ion power battery. Energy Convers Manag. 2015;103:157–65.

    CAS  Google Scholar 

  107. Rao Z, Qian Z, Kuang Y, Li Y. Thermal performance of liquid cooling based thermal management system for cylindrical lithium-ion battery module with variable contact surface. Appl Therm Eng. 2017;123:1514–22.

    Google Scholar 

  108. Du X, Qian Z, Chen Z, Rao Z. Experimental investigation on mini-channel cooling–based thermal management for Li-ion battery module under different cooling schemes. Int J Energy Res. 2018;42:2781–8.

    CAS  Google Scholar 

  109. Lv Y, Zhou D, Yang X, Liu X, Li X, Zhang G. Experimental investigation on a novel liquid-cooling strategy by coupling with graphene-modified silica gel for the thermal management of cylindrical battery. Appl Therm Eng. 2019;159:113885.

    CAS  Google Scholar 

  110. Lai Y, Wu W, Chen K, Wang S, Xin C. A compact and lightweight liquid-cooled thermal management solution for cylindrical lithium-ion power battery pack. Int J Heat Mass Transf. 2019;144:118581.

    Google Scholar 

  111. Zhou H, Zhou F, Zhang Q, Wang Q, Song Z. Thermal management of cylindrical lithium-ion battery based on a liquid cooling method with half-helical duct. Appl Therm Eng. 2019;162:114257.

    CAS  Google Scholar 

  112. Falahat A, Bahoosh R, Noghrehabadi A, Rashidi MM. Experimental study of heat transfer enhancement in a novel cylindrical heat sink with helical minichannels. Appl Therm Eng. 2019;154:585–92.

    Google Scholar 

  113. Abdulqadur AA, Jaffal HM, Khudhur DS. Performance optimiation of a cylindrical mini-channel heat sink using hybrid straight–wavy channel. Int J Therm Sci. 2019;146:106111.

    Google Scholar 

  114. Cao W, Zhao C, Wang Y, Dong T, Jiang F. Thermal modeling of full-size-scale cylindrical battery pack cooled by channeled liquid flow. Int J Heat Mass Transf. 2019;138:1178–87.

    Google Scholar 

  115. Zhao C, Cao W, Dong T, Jiang F. Thermal behavior study of discharging/charging cylindrical lithium-ion battery module cooled by channeled liquid flow. Int J Heat Mass Transf. 2018;120:751–62.

    CAS  Google Scholar 

  116. Tang Z, Min X, Song A, Cheng J. Thermal management of a cylindrical lithium-ion battery module using a multichannel wavy tube. J Energy Eng. 2019;145:04018072.

    Google Scholar 

  117. Wang Y, Zhang G, Yang X. Optimization of liquid cooling technology for cylindrical power battery module. Appl Therm Eng. 2019;162:114200.

    Google Scholar 

  118. Tang Z, Wang S, Liu Z, Cheng J. Numerical analysis of temperature uniformity of a liquid cooling battery module composed of heat-conducting blocks with gradient contact surface angles. Appl Therm Eng. 2020;178:115509.

    Google Scholar 

  119. Wiriyasart S, Hommalee C, Sirikasemsuk S, Prurapark R, Naphon P. Thermal management system with nanofluids for electric vehicle battery cooling modules. Case Stud Therm Eng. 2020;18:100–583.

    Google Scholar 

  120. Wang H, Tao T, Xu J, Mei X, Liu X, Gou P. Cooling capacity of a novel modular liquid-cooled battery thermal management system for cylindrical lithium ion batteries. Appl Therm Eng. 2020;178:115591.

    CAS  Google Scholar 

  121. Zhao C, Sousa ACM, Jiang F. Minimization of thermal non-uniformity in lithium-ion battery pack cooled by channeled liquid flow. Int J Heat Mass Transf. 2019;129:660–70.

    CAS  Google Scholar 

  122. Xie L, Huang Y, Lai H. Coupled prediction model of liquid-cooling based thermal management system for cylindrical lithium-ion module. Appl Therm Eng. 2020;178:115599.

    CAS  Google Scholar 

  123. Yates M, Akrami M, Javadi AA. Analysing the performance of liquid cooling designs in cylindrical lithium-ion batteries. J Energy Storage. 2021;33:100913.

    Google Scholar 

  124. Li W, Garg A, Xiao M, Gao L. Optimization for liquid cooling cylindrical battery thermal management system based on Gaussian process model. J Therm Sci Eng Appl. 2021;13:021015.

    CAS  Google Scholar 

  125. Xu H, Zhang X, Xiang G, Li H. Optimization of liquid cooling and heat dissipation system of lithium-ion battery packs of automobile. Case Stud Therm Eng. 2021;26:101012.

    Google Scholar 

  126. Dong F, Cheng Z, Zhu J, Song D, Ni J. Investigation and optimization on cooling performance of a novel double helix structure for cylindrical lithium-ion batteries. Appl Therm Eng. 2021;189:116758.

    CAS  Google Scholar 

  127. Zhang T, Gao Q, Gu Y. Studies on thermal management of lithium-ion battery using non-metallic heat exchanger. Appl Therm Eng. 2021;182:116095.

    CAS  Google Scholar 

  128. Fan Z, Gao R, Liu S. A novel battery thermal management system based on P type triply periodic minimal surface. Int J Heat Mass Transf. 2022;194:123090.

    Google Scholar 

  129. Yin B, Zuo S, Xu Y, Chen S. Performance of liquid cooling battery thermal management system in vibration environment. J Energy Storage. 2022;53:105232.

    Google Scholar 

  130. Sun Y, Bai R, Ma J. Development and analysis of a new cylindrical lithium-ion battery thermal management system. Chin J Mech Eng. 2022;35:100.

    Google Scholar 

  131. Liang G, Li J, He J, Tian J, Chen X, Chen L. Numerical investigation on a unitization-based thermal management for cylindrical lithium-ion batteries. Energy Rep. 2022;8:4608–21.

    Google Scholar 

  132. Li W, Garg A, Wang N, Gao L, Le Phung ML, Tran VM. Computational fluid dynamics-based numerical analysis for studying the effect of mini-channel cooling plate, flow characteristics, and battery arrangement for cylindrical lithium-ion battery pack. J Electrochem Energy Conv Storage. 2022;19:041003.

    CAS  Google Scholar 

  133. Rao Z, Wang Q, Huang C. Investigation of the thermal performance of phase change material/mini-channel coupled battery thermal management system. Appl Energy. 2016;164:659–69.

    Google Scholar 

  134. Kshetrimayum KS, Yoon YG, Gye HR, Lee CJ. Preventing heat propagation and thermal runaway in electric vehicle battery modules using integrated PCM and micro-channel plate cooling system. Appl Therm Eng. 2019;159:113797.

    Google Scholar 

  135. Bamdezh MA, Molaeimanesh GR, Zanganeh S. Role of foam anisotropy used in the phase-change composite material for the hybrid thermal management system of lithium-ion battery. J Energy Storage. 2020;32:101778.

    Google Scholar 

  136. Mustafa J, Alqaed S, Almehmadi FA, Sharifpur M. Effect of simultaneous use of water-alumina nanofluid and phase change nanomaterial in a lithium-ion battery with a specific geometry connected solar system. J Power Sources. 2022;539:231570.

    CAS  Google Scholar 

  137. Rostami S, Nadooshan AA, Raisi A, Bayareh M. Effect of using a heatsink with nanofluid flow and phase change material on thermal management of plate lithium-ion battery. J Energy Storage Part A. 2022;52:104686.

    Google Scholar 

  138. Wang R, Liang Z, Souri M, Esfahani MN, Jabbari M. Numerical analysis of lithium-ion battery thermal management system using phase change material assisted by liquid cooling method. Int J Heat Mass Transf Part B. 2022;183:122095.

    CAS  Google Scholar 

  139. Cao J, Luo M, Fang X, Ling Z, Zhang Z. Liquid cooling with phase change materials for cylindrical Li-ion batteries: An experimental and numerical study. Energy. 2020;191:116565.

    CAS  Google Scholar 

  140. Liu Z, Huang J, Cao M, Jiang G, Yan Q, Hu J. Experimental study on the thermal management of batteries based on the coupling of composite phase change materials and liquid cooling. Appl Therm Eng. 2021;185:116415.

    CAS  Google Scholar 

  141. Yang W, Zhou F, Zhou H, Wang Q, Kong J. Thermal performance of cylindrical lithium-ion battery thermal management system integrated with mini-channel liquid cooling and air cooling. Appl Therm Eng. 2020;175:115331.

    CAS  Google Scholar 

  142. Yuan X, Tang A, Shan C, Liu Z, Li J. Experimental investigation on thermal performance of a battery liquid cooling structure coupled with heat pipe. J Energy Storage. 2020;32:101984.

    Google Scholar 

  143. Jang DS, Yun S, Hong SH, Cho W, Kim Y. Performance characteristics of a novel heat pipe-assisted liquid cooling system for the thermal management of lithium-ion batteries. Energy Convers Manag. 2022;251:115001.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saman Rashidi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sarvar-Ardeh, S., Rashidi, S., Rafee, R. et al. A review on the applications of micro-/mini-channels for battery thermal management. J Therm Anal Calorim 148, 7959–7979 (2023). https://doi.org/10.1007/s10973-023-12092-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-023-12092-6

Keywords

Navigation