Skip to main content
Log in

Hydration characteristics of iron-rich phosphoaluminate cement: effect of accelerating admixtures on the setting time and compressive strength

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Iron-rich phosphoaluminate cement (PAC) has broad application prospects in some special engineerings where traditional silicate cement is not applicable due to its superior performance. However, it was found that the cement setting was too slow. The objective of this paper is to initially explore the effect of accelerating admixtures on the setting and hydration properties of iron-rich PAC prepared from industrial raw materials. The experimental results indicated that Al2(SO4)3 could shorten the setting time but decreased the compressive strength of the cement due to the expansion of AFt generated in cement stone. By contrast, the same content of CaCl2 had a more significant effect on promoting the cement setting. Further, 5% CaCl2 benefited the development of mechanical strength by promoting the cement hydration and improving the internal pore structure of cement stone. Consequently, this research provided guidance for regulating the working performance and promote the application of iron-rich PAC well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Liu P, Chen Y, Yu Z, Ding Z, Xing F, Lu Z, et al. Early hydration properties and performance evolution of phosphoaluminate cement concrete. Constr Build Mater. 2020;233:117318. https://doi.org/10.1016/j.conbuildmat.2019.117318.

    Article  CAS  Google Scholar 

  2. Li S, Wang S, Liu H, Bharath M, Zhang S. Variation in the sulfate attack resistance of iron rich-phosphoaluminate cement with mineral admixtures subjected to a Na2SO4 solution. Constr Build Mater. 2020;230:116817. https://doi.org/10.1016/j.conbuildmat.2019.116817.

    Article  CAS  Google Scholar 

  3. Bi H, Zhang W, Xu X, Ming A, Shen Y, Wang S, et al. Chloride binding and transport characteristic of phosphoaluminate cement-based marine sand coating subjected to marine environment. Constr Build Mater. 2021;281:122505. https://doi.org/10.1016/j.conbuildmat.2021.122505.

    Article  CAS  Google Scholar 

  4. Wang S, Zhang W, Zhang S, Lu L, Cheng X. Variation of resistance to chloride penetration of iron-rich phosphoaluminate cement with admixture materials subjected to NaCl environment. Constr Build Mater. 2020;231:117165. https://doi.org/10.1016/j.conbuildmat.2019.117165.

    Article  CAS  Google Scholar 

  5. Liu H, Wang S, Huang Y, Melugiri-Shankaramurthy B, Zhang S, Cheng X. Effect of SCMs on the freeze-thaw performance of iron-rich phosphoaluminate cement. Constr Build Mater. 2020;230:117012. https://doi.org/10.1016/j.conbuildmat.2019.117012.

    Article  CAS  Google Scholar 

  6. Xu W, Dai JG, Ding Z, Wang Y. Polyphosphate-modified calcium aluminate cement under normal and elevated temperatures: Phase evolution, microstructure, and mechanical properties. Ceram Int. 2017;43:15525–36. https://doi.org/10.1016/j.ceramint.2017.08.102.

    Article  CAS  Google Scholar 

  7. GB 175–2007 Common portland cement. Standardization Administration of China; 2007.

  8. Li S, Zhang G, Zhang N, Cao W. Study of hydration activity in the aluminum-rich zone of CaO-Al2O3-P2O5 ternary system. J Chinese Ceram Soc. 1998;26:142–9.

    CAS  Google Scholar 

  9. Cheng L, Sheng G, Pi Y. Influence of phosphogypsum on setting time of portland cement. Build Mater World. 2004;26:5.

    Google Scholar 

  10. Li J, Zhu J, Zhou W, Sun Z. Effect of phosphate slag on the setting time of silicate cement and the mechanism. 2011;32:21–3

  11. Kamenchukov A, Yarmolinsky V, Pugachev I. Evaluation of road repair efficiency in terms of ensuring traffic quality and safety. Transp Res Procedia. 2018;36:627–33. https://doi.org/10.1016/j.trpro.2018.12.142.

    Article  Google Scholar 

  12. Shi C, Zou X, Yang L, Wang P, Niu M. Influence of humidity on the mechanical properties of polymer-modified cement-based repair materials. Constr Build Mater. 2020;261:119928. https://doi.org/10.1016/j.conbuildmat.2020.119928.

    Article  CAS  Google Scholar 

  13. Arora A, Singh B, Kaur P. Novel material i.e. Magnesium phosphate cement (MPC) as repairing material in roads and buildings. Mater Today Proc. 2019;17:70–6. https://doi.org/10.1016/j.matpr.2019.06.402.

    Article  CAS  Google Scholar 

  14. Wu Z, Liu J, Zhang G, Wang Y, Wang Y. Effect of aluminum sulfate alkali-free liquid accelerator with compound alkanol lamine on the hydration processes of Portland cement. Constr Build Mater. 2021;308:125101. https://doi.org/10.1016/j.conbuildmat.2021.125101.

    Article  CAS  Google Scholar 

  15. Lerch W. The influence of gypsum on the hydration and properties of portland cement pastes. National Academies; 2008.

  16. Kumar S, Kameswara Rao CVS. Effect of sulfates on the setting time of cement and strength of concrete. Cem Concr Res. 1994;24:1237–44.

    Article  CAS  Google Scholar 

  17. Riding K, Silva DA, Scrivener K. Early age strength enhancement of blended cement systems by CaCl2 and diethanol-isopropanolamine. Cem Concr Res. 2010;40:935–46. https://doi.org/10.1016/j.cemconres.2010.01.008.

    Article  CAS  Google Scholar 

  18. Makaratat N, Jaturapitakkul C, Namarak C, Sata V. Effects of binder and CaCl2 contents on the strength of calcium carbide residue-fly ash concrete. Cem Concr Compos. 2011;33:436–43. https://doi.org/10.1016/j.cemconcomp.2010.12.004.

    Article  CAS  Google Scholar 

  19. Yum WS, Jeong Y, Yoon S, Jeon D, Jun Y, Oh JE. Effects of CaCl2 on hydration and properties of lime(CaO)-activated slag/fly ash binder. Cem Concr Compos. 2017;84:111–23. https://doi.org/10.1016/j.cemconcomp.2017.09.001.

    Article  CAS  Google Scholar 

  20. Steger L, Blotevogel S, Frouin L, Patapy C, Cyr M. Experimental evidence for the acceleration of slag hydration in blended cements by the addition of CaCl2. Cem Concr Res. 2021;149:2–10.

    Article  Google Scholar 

  21. Odler I, Abdul-Maula S. Possibilities of quantitative determination of the AFt-(ettringite) and AFm-(monosulphate) phases in hydrated cement pastes. Cem Concr Res. 1984;14:133–41.

    Article  CAS  Google Scholar 

  22. Liu X, Feng P, Lyu C, Ye S. The role of sulfate ions in tricalcium aluminate hydration: New insights. Cem Concr Res. 2020;130:105973. https://doi.org/10.1016/j.cemconres.2020.105973.

    Article  CAS  Google Scholar 

  23. Liu Y, Li H, Wang K, Wu H, Cui B. Effects of accelerator–water reducer admixture on performance of cemented paste backfill. Constr Build Mater. 2020;242:118187. https://doi.org/10.1016/j.conbuildmat.2020.118187.

    Article  CAS  Google Scholar 

  24. Tan H, Li M, Ren J, Deng X, Zhang X, Nie K. Effect of aluminum sulfate on the hydration of tricalcium silicate. Constr Build Mater. 2019;205:414–24. https://doi.org/10.1016/j.conbuildmat.2019.02.011.

    Article  CAS  Google Scholar 

  25. Liu X, Ma B, Tan H, Gu B, Zhang T, Chen P, et al. Effect of aluminum sulfate on the hydration of Portland cement, tricalcium silicate and tricalcium aluminate. Constr Build Mater. 2020;232:117179. https://doi.org/10.1016/j.conbuildmat.2019.117179.

    Article  CAS  Google Scholar 

  26. Briendl LG, Mittermayr F, Baldermann A, Steindl FR, Sakoparnig M, Letofsky-Papst I, et al. Early hydration of cementitious systems accelerated by aluminium sulphate: Effect of fine limestone. Cem Concr Res. 2020;134:106069. https://doi.org/10.1016/j.cemconres.2020.106069.

    Article  CAS  Google Scholar 

  27. Tian Y, Xing J, Zhao Y, Sun X, Wu P, Qiu J. Influence of aluminum sulfate on strength of CaO-activated slag system. Constr Build Mater. 2021;306:124895. https://doi.org/10.1016/j.conbuildmat.2021.124895.

    Article  CAS  Google Scholar 

  28. Niu M, Li G, Zhang J, Cao L. Preparation of alkali-free liquid accelerator based on aluminum sulfate and its accelerating mechanism on the hydration of cement pastes. Constr Build Mater. 2020;253:119246. https://doi.org/10.1016/j.conbuildmat.2020.119246.

    Article  CAS  Google Scholar 

  29. Liu S, Shen Y, Wang Y, He H, Luo S, Huang C. Synergistic use of sodium bicarbonate and aluminum sulfate to enhance the hydration and hardening properties of Portland cement paste. Constr Build Mater. 2021;299:124248. https://doi.org/10.1016/j.conbuildmat.2021.124248.

    Article  CAS  Google Scholar 

  30. Ganesh I, Bhattacharjee S, Saha BP, Johnson R, Rajeshwari K, Sengupta R, et al. An efficient MgAl2O4 spinel additive for improved slag erosion and penetration resistance of high-Al2O3 and MgO-C refractories. Ceram Int. 2002;28:245–53.

    Article  CAS  Google Scholar 

  31. Baudín C, Martínez R, Pena P. High-Temperature Mechanical Behavior of Stoichiometric Magnesium Spinel. J Am Ceram Soc. 2010;78:1857–62.

    Article  Google Scholar 

  32. Singh V, Chakradhar R, Rao JL, Kim DK. Synthesis, characterization, photoluminescence and EPR investigations of Mn doped MgAl2O4 phosphors. J Solid State Chem. 2007;180:2067–74.

    Article  CAS  Google Scholar 

  33. GB/T 1346–2011, Test methods for water requirement of normal consistency, setting time and soundness of the portland cements. Standardization Administration of China; 2001.

  34. GB/T 17671–1999, Method of testing cements-Determination of strength. Standardization Administration of China; 1999.

  35. Mehta PK. Concrete. Structure, properties and materials. Can J Civ Eng. 1986;572.

  36. Xu Y, Xiao G, Duan F. Effect of additives on setting time of the spinel-containing aluminous cements. China Molybdenum Ind. Xi’an University of Architecture and Technology; 2008;32:28–31.

  37. Shi J, Xiao G. Effect of additive on bonding strength of the new spinel-containing aluminous cements. Bull Chin Ceram Soc. 2008;28:175–9.

    Google Scholar 

  38. Ren S, Zhang A, Li S, Hu J. Effect of additive on setting time of phosphate aluminate cement. Sci Technol. 2002;16:315–8.

    CAS  Google Scholar 

  39. Qwa B, Zya B, Yh C, Swa B, Xsa B. Effect of gypsum dosage on the hydration and strength of alite-ye’elimite cement synthesized at 1300°C. Constr Build Mater. 2021;287: 123063.

    Article  Google Scholar 

  40. Xu J, Peng C, Wan L, Wu Q, She W. Effect of crack self-healing on concrete diffusivity: mesoscale dynamics simulation study. J Mater Civ Eng. 2020;32:04020149.

    Article  Google Scholar 

  41. Wang Y, Su M, Zhang L. Sulphoaluminate cement (in Chinese). Beijing: Beijing University of Technology Press; 1999.

    Google Scholar 

  42. Bushnell-Watson SM, Sharp JH. The application of thermal analysis to the hydration and conversion reactions of calcium aluminate cements. Mater Constr. 1992;42:13–32.

    Article  CAS  Google Scholar 

  43. Chen W, Huang B, Yuan Y, Deng M. Deterioration process of concrete exposed to internal sulfate attack. Materials (Basel). 2020;13:1336.

    Article  CAS  PubMed  Google Scholar 

  44. Yang N, Yue W. Handbook of atlas of inorganic nonmetallic Materials. Wuhan: Wuhan University of Technology; 2000.

    Google Scholar 

  45. Snehal K, Das BB, Akanksha M. Early age, hydration, mechanical and microstructure properties of nano-silica blended cementitious composites. Constr Build Mater. 2020;233: 117212.

    Article  CAS  Google Scholar 

  46. Snehal K, Das BB, Kumar S. Influence of integration of phase change materials on hydration and microstructure properties of nanosilica admixed cementitious mortar. J Mater Civ Eng. 2020;32:4020108.

    Article  CAS  Google Scholar 

  47. Thomas M, Folliard K, Drimalas T, Ramlochan T. Diagnosing delayed ettringite formation in concrete structures. Cem Concr Res. 2008;38:841–7.

    Article  CAS  Google Scholar 

  48. Zhang Y, Yu P, Pan F, He Y. The synergistic effect of AFt enhancement and expansion in Portland cement-aluminate cement-FGD gypsum composite cementitious system. Constr Build Mater. 2018;190:985–94.

    Article  CAS  Google Scholar 

  49. Yue Y, Wang JJ, Basheer PAM, Bai Y. Raman spectroscopic investigation of Friedel’s salt. Cem Concr Compos. 2018;86:306–14.

    Article  CAS  Google Scholar 

  50. Suryavanshi AK, Scantlebury JD, Lyon SB. Mechanism of Friedel’s salt formation in cements rich in tri-calcium aluminate. Cem Concr Res. 1996;26:717–27.

    Article  CAS  Google Scholar 

  51. Ukrainczyk N, Vrbos N, Šipušić J. Influence of metal chloride salts on calcium aluminate cement hydration. Adv Cem Res. 2012;24:249–62.

    Article  CAS  Google Scholar 

  52. Goni S, Gaztanaga MT, Sagrera JL, Hernandez MS. The influence of NaCl on the reactivity of high alumina cement in water: Pore-solution and solid phase characterization. J Mater Res. 1994;9:1533–9.

    Article  CAS  Google Scholar 

  53. Wang Z, Zhao Y, Yang H, Zhou L, Diao G, Liu G, et al. Influence of sodium chloride on the hydration of calcium aluminate cement constantly cured at 5, 20 and 40° C. Adv Cem Res. 2021;33:84–95.

    Article  Google Scholar 

Download references

Acknowledgements

National Key Research and Development Plan of China (No. 2021YFB3802002), Natural Science Foundation of China (52072149, 52002144), Natural Science Foundation of China (ZR2020QE046), the Taishan Scholars Program, Case-by-Case Project for Top Outstanding Talents of Jinan.

Author information

Authors and Affiliations

Authors

Contributions

JY did conceptualization, software, methodology, writing—original draft preparation. RT done visualization and investigation. FW provided software and validation. SW performed supervision, project administration, and funding. YH contributed to funding. PZ was involved in formal analysis and data curation. PH contributed to writing—reviewing and editing.

Corresponding author

Correspondence to Shoude Wang.

Ethics declarations

Conflict of interest

The authors certify that they have no conflicts of interest, or affiliations with or involvement in any organization or entity with any financial interest (such as honoraria; participation in speakers’ bureaus; membership, employment, consultancies, stock ownership, or other equity interest; and expert testimony or patent-licensing arrangements), or non-financial interest (such as personal relationships, knowledge or beliefs) in the materials discussed in this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, J., Teng, R., Wu, F. et al. Hydration characteristics of iron-rich phosphoaluminate cement: effect of accelerating admixtures on the setting time and compressive strength. J Therm Anal Calorim 148, 5283–5295 (2023). https://doi.org/10.1007/s10973-023-12074-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-023-12074-8

Keywords

Navigation