Skip to main content
Log in

The temperature effect on the thermodynamics of the interaction of l-Tryptophan with urea and glycerol in water

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The temperature dependence of the pair and triplet interaction between aromatic amino acid L-Tryptophan (Trp) and glycerol (Gl) or urea (U) in an aqueous medium was studied. For this goal, the enthalpies of solution of Trp in the water-Gl and water-U mixtures were determined in the temperature range of 298.15–328.15 K. The heat capacity values of amino acid solution as well as the partial molal heat capacities were calculated. The virial enthalpic coefficients of pair (Gl–Trp or U–Trp) and triple (Gl–Gl–Trp or U–U–Trp) interactions in aqueous solution were also computed in terms of the excess function concept. The results obtained were used to analyze the solute-non-electrolyte interactions in a liquid phase and their possible influence on stability of protein macromolecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Kustov AV, Smirnova NL, Neueder R, Kunz W. Amino acid solvation in aqueous kosmotrope solutions—temperature dependence of the L-histidine—glycerol interaction. J Phys Chem B. 2012;116:2325–9. https://doi.org/10.1021/jp2121559.

    Article  CAS  PubMed  Google Scholar 

  2. Mezhevoi IN, Badelin VG. Standard enthalpies of dissolution of L-alanine in the water solutions of glycerol, ethylene glycol, and 1, 2-propylene glycol at 298.15 K. Russ J Phys Chem A. 2010;84:607–10. https://doi.org/10.1134/S0036024410040151.

    Article  CAS  Google Scholar 

  3. Palecz B, Piekarski H. Enthalpies of solution of glycine in aqueous solutions of 1, 2-diols and glycerol at 250C. J Sol Chem. 1997;26:621–9. https://doi.org/10.1007/BF02767632.

    Article  CAS  Google Scholar 

  4. Carrillo-Nava E, Dohnal V, Costas M. Infinite dilution activity coefficients for toluene in aqueous solutions of protein stabilizers glycerol, ethylene glycol, glucose, sucrose, and trehalose. J Chem Thermodyn. 2002;34:443–56. https://doi.org/10.1006/jcht.2002.0858.

    Article  CAS  Google Scholar 

  5. Gekko K, Timasheff SN. Mechanism of protein stabilization by glycerol: preferential hydration in glycerol-water mixtures? Biochemistry. 1981;20:4667–76. https://doi.org/10.1021/bi00519a023.

    Article  CAS  PubMed  Google Scholar 

  6. Gekko K. Mechanism of polyol-induced protein stabilization: solubility of amino acids and diglycine in aqueous polyol solutions. J Biochem. 1981;90(6):1633–41. https://doi.org/10.1093/oxfordjournals.jbchem.a133638.

    Article  CAS  PubMed  Google Scholar 

  7. Kustov AV. The aromatic amino acid behaviour in aqueous amide solutions. the temperature dependence of the L-phenylalanine-urea interaction. J Therm Anal Calorim. 2007;89:41–6. https://doi.org/10.1007/s10973-007-8464-2.

    Article  CAS  Google Scholar 

  8. Kustov AV, Smirnova NL, Batov DV. Amino acid behaviour in aqueous denaturant solutions: temperature dependence of the L-histidine-amide interaction. J Phys Chem B. 2010;114:10171–5. https://doi.org/10.1021/jp105489b.

    Article  CAS  PubMed  Google Scholar 

  9. Korolev VP, Antonova OA, Smirnova NL. Thermal properties and interparticle interactions of L-proline, glycine and L-alanine in aqueous urea solutions at 288–318 K. J Therm Anal Calorim. 2012;108:1–7. https://doi.org/10.1007/s10973-011-1401-4.

    Article  CAS  Google Scholar 

  10. Nozaki Y, Tanford C. The solubility of amino acids and related compounds in aqueous urea solutions. J Biol Chem. 1963;238:4074–81.

    Article  CAS  PubMed  Google Scholar 

  11. Palecz B, Taniewska-Osinska S. Enthalpies of solution of glycine in solutions of aqueous ureas at 298.15 K. Thermochim Acta. 1990;173:295–9. https://doi.org/10.1016/0040-6031(90)80615-6.

    Article  CAS  Google Scholar 

  12. Kustov AV, Antonova OA, Smirnova NL. Thermodynamics of solution of L-Tryptophan in water. J Therm Anal Calorim. 2017;129(1):461–5. https://doi.org/10.1007/s10973-017-6172-0.

    Article  CAS  Google Scholar 

  13. Batov DV, Antonova OA, Smirnova NL. Thermodynamics of the interaction of L-Tryptophan with urea or glycerol in water at standard conditions. J Mol Liq. 2021. https://doi.org/10.1016/j.molliq.2021.117352.

    Article  Google Scholar 

  14. Kustov AV, Korolev VP. Temperature dependence of the interaction between hydrophobic and hydrophilic solutes—a calorimetric study. Thermochim Acta. 2005;437:190–5.

    Article  Google Scholar 

  15. Kustov AV, Antonova OA, Smirnova NL, Khudyaeva IS, Belykh DV, Berezin DB. Enthalpies and heat capacities of solution of methylpheophorbide, dioxidine and their conjugate in DMF at 298–318 K. Thermochim Acta. 2018;669:169–72. https://doi.org/10.1016/j.tca.2018.09.022.

    Article  CAS  Google Scholar 

  16. Wadsö I, Goldberg RN. Standards in isothermal microcalorimetry: (IUPAC technical report. Pure Appl Chem. 2001;73(10):1625–39. https://doi.org/10.1351/pac200173101625.

    Article  Google Scholar 

  17. Günther C, Pfestorf R, Rother M, Seidel J, Zimmermann R, Wolf G, Schröder V. An interlaboratory test for certification of potassium chloride as a certified reference material (CRM) for solution calorimetry. J Therm Anal. 1988;33:359–63. https://doi.org/10.1007/BF01914624.

    Article  Google Scholar 

  18. Korolev VP, Batov DV, Vandyshev VN, Antonova OA. Thermodynamics of nonelectrolyte solutions. Collect Sci Papers Inst Nonaq Sol Chem AS USSR. Ivanovo. 1989. pp. 13–20 (in Russian).

  19. Ivanov EV, Abrosimov VK. Biologically active substances in solutions. Structure. Thermodynamics. Reactivity. Moscow:Nauka; 2001. pp. 110–183 (in Russian).

  20. Antonova OA, Korolev VP, Kustov AV. Thermodynamics of solution of L-valine in water. Thermochim Acta. 2017;658:68–71. https://doi.org/10.1016/j.tca.2017.10.020.

    Article  CAS  Google Scholar 

  21. Kikuchi M, Sakurai M, Nitta K. Partial molar volumes and adiabatic compressibilities of amino acids in dilute aqueous solutions at 5, 15, 25, 35, and 45 °C. J Chem Eng Data. 1996;40:935–42.

    Article  Google Scholar 

  22. Palecz B. Enthalpic homogeneous pair interaction coefficients of L-α-amino acids as a hydrophobicity parameter of amino acid side chains. J Am Chem Soc. 2002;124(21):6003–8. https://doi.org/10.1021/ja011937i.

    Article  CAS  PubMed  Google Scholar 

  23. Hakin AW, Duke MM, Klassen SA, McKay RM, Preuss KE. Apparent molar heat capacities and volumes of some aqueous solution of aliphatic amino acid at 288.15, 298.15, 313.15, and 328.15 K. Can J Chem. 1994;72:362–8. https://doi.org/10.1139/v94-056.

    Article  CAS  Google Scholar 

  24. Korolev VP, Batov DV, Smirnova NL, Kustov AV. Amino acids in aqueous solution. Effect of molecular structure and temperature on thermodynamics of dissolution. Russ Chem Bull. 2007;56:739–42.

  25. Korolev VP, Batov DV, Smirnova NL. Thermodynamics of solution of glycine in aqueous urea solution. √m rule. J Struct Chem. 2007;48:666–72. https://doi.org/10.1007/s10947-007-0100-2.

    Article  CAS  Google Scholar 

  26. Korolev VP, Antonova OA, Smirnova NL. Thermodynamics of aqueous L-proline solutions at 273–323 K. Russ J Phys Chem A. 2010;84(11):1827–31. https://doi.org/10.1134/S0036024410110014.

    Article  CAS  Google Scholar 

  27. Franks F. Physical chemistry of small carbohydrates—equilibrium solution properties. Pure Appl Chem. 1987;59:189–202.

    Article  Google Scholar 

  28. Kustov AV, Ivanov EV. Solvophobic and solvophilic effects in aqueous and non-aqueous solutions of urea and tetramethylurea. In: Advances in thermodynamics research 2021 (pp. 75-130).

  29. Vanzi F, Madan B, Sharp K. Effect of the protein denaturants urea and guanidinium on water structure: a structural and thermodynamic study. J Am Chem Soc. 1998;120(41):10748–53. https://doi.org/10.1021/ja981529n.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors dedicate this article to the memory of OAA, whose scientific work was related to the study of amino acid solutions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dmitrij V. Batov.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Batov, D.V., Kustov, A.V. & Smirnova, N.L. The temperature effect on the thermodynamics of the interaction of l-Tryptophan with urea and glycerol in water. J Therm Anal Calorim 148, 5521–5527 (2023). https://doi.org/10.1007/s10973-023-12056-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-023-12056-w

Keywords

Navigation