Skip to main content
Log in

New insights into the thermal behavior and stability of ammonium bifluoride: non-isothermal thermokinetic analysis

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In this research, the thermal behavior of NH4HF2 was studied by non-isothermal thermogravimetric analysis between 298 and 600 K in a nitrogen atmosphere. The thermal analysis indicated that the gasification of this material begins in the solid state from 343 K, approximately, and continues after the melting point (398 K) in the liquid state. The Friedman's isoconversional method and combined kinetic analysis were used to evaluate the thermokinetic characteristics of the gasification of this compound in solid and liquid states. The results show that both processes follow an F0 model with \(Ea_{{{\text{Sol}}}}\) = 71.3 kJ mol−1 and \(\ln \left( {A_{{{\text{Sol}}}} /s^{ - 1} } \right)\) = 12.8, and \(Ea_{{{\text{Liq}}}}\) = 66.6 kJ mol−1 and \(\ln \left( {A_{{{\text{Liq}}}} /s^{ - 1} } \right)\) = 11.5. The kinetic triplets were corroborated by reconstructing the original experimental curves and predicting curves obtained under experimental conditions different from those used in the study. The F0 model indicates that the processes are dominated by sublimation/vaporization. The released gases were condensed and characterized, suggesting the formation of a new species, the “NH4HF2 gas.”

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Flynn S, Zhang C, Griffith KJ, Shen J, Wolverton C, Dravid VP. Fluoridation of HfO2. Inorg Chem. 2021;60:4463–74. https://doi.org/10.1021/acs.inorgchem.0c03254.

    Article  CAS  PubMed  Google Scholar 

  2. Mukherjee A, Awasthi A, Mishra S, Krishnamurthy N. Studies on fluorination of Y2O3 by NH4HF2. Thermochim Acta Elsevier. 2011;520:145–52. https://doi.org/10.1016/j.tca.2011.03.032.

    Article  CAS  Google Scholar 

  3. Li JS, Dong WZ, Lu H, Zhang FM. Applications of ammonium bifluoride in organic synthesis. Curr Org Chem. 2018;22:581–9.

    Article  CAS  Google Scholar 

  4. Naguib M, Barsoum MW, Gogotsi Y. Ten years of progress in the synthesis and development of MXenes. Adv Mater. 2021;33:2103393. https://doi.org/10.1002/adma.202103393.

    Article  CAS  Google Scholar 

  5. Inorganic Fluorides Applications. (2021). In: solvay. https://www.solvay.com/en/brands/ambi-ammonium-hydrogen-fluoride/applications. Accessed 10 Feb 2021.

  6. Resentera AC, Rodriguez MH, Rosales GD (2019). Procedimiento pirometalúrgico para la obtención de compuestos de litio e intermediarios a partir de α-espudumeno y lepidolita. Argentina https://patentscope.wipo.int/search/es/detail.jsf?docId=WO2019102416

  7. Resentera AC, Esquivel MR, Rodriguez MH. Low-temperature lithium extraction from α-spodumene with NH4HF2: modeling and optimization by least squares and artificial neural networks. Chem Eng Res Des. 2021;167:73–83. https://doi.org/10.1016/j.cherd.2020.12.023.

    Article  CAS  Google Scholar 

  8. Resentera AC, Perejón A, Esquivel MR, Pérez-Maqueda LA, Rodriguez MH. Thermal behavior of ammonium fluorosilicates complexes: obtaining and kinetic analysis. Chem Eng Res Des. 2022;182:490–501. https://doi.org/10.1016/j.cherd.2022.04.021Get.

    Article  CAS  Google Scholar 

  9. O’Hara MJ, Kellogg CM, Parker CM, Morrison SS, Corbey JF, Grate JW. Decomposition of diverse solid inorganic matrices with molten ammonium bifluoride salt for constituent elemental analysis. Chem Geo Elsevier. 2017;466:341–51. https://doi.org/10.1016/j.chemgeo.2017.06.023.

    Article  CAS  Google Scholar 

  10. Thorat DD, Tripathi BM, Sathiyamoorthy D. Extraction of beryllium from Indian beryl by ammonium hydrofluoride. Hydrometallurgy Elsevier. 2011;109:18–22. https://doi.org/10.1016/j.hydromet.2011.05.003.

    Article  CAS  Google Scholar 

  11. Lide DR, Baysinger G, Berger LI. CRC handbook of chemistry and physics. Boca Raton: CRC Press; 2016.

    Google Scholar 

  12. White AJC, Pistorius CWFT. Melting curve and high-pressure polymorphism of NH4HF2. J Solid State Chem. 1972;4:195–8. https://doi.org/10.1016/0022-4596(72)90105-3.

    Article  CAS  Google Scholar 

  13. Carling RW, Westrum EF. Thermodynamics of the monohydrogen difluorides V. melting thermodynamics of NH4HF2. J Chem Thermodyn. 1976;8:269–76. https://doi.org/10.1016/0021-9614(76)90105-1.

    Article  CAS  Google Scholar 

  14. Erdey L, Gál S, Liptay G. Thermoanalytical properties of analytical-grade reagents. Talanta. 1964;11:913–40. https://doi.org/10.1016/0039-9140(64)80128-4.

    Article  CAS  Google Scholar 

  15. Demyanova LP, Rimkevich VS, Buynovskiy AS. Elaboration of nanometric amorphous silica from quartz-based minerals using the fluorination method. J Fluor Chem Elsevier. 2011;132:1067–71. https://doi.org/10.1016/j.jfluchem.2011.06.003.

    Article  CAS  Google Scholar 

  16. Rimkevich VS, Pushkin AA, Malovitskii YN, Dem’yanova LP, IVGirenko. Fluoride processing of non-bauxite ores. Russ J Appl Chem. 2009;82:6–11. https://doi.org/10.1134/S1070427209010029.

    Article  CAS  Google Scholar 

  17. Andreev AA, D’yachenko AN, RIKraidenko. Fluorination of beryllium concentrates with ammonium fluorides. Russ J Appl Chem. 2008;81:178–82. https://doi.org/10.1134/S1070427208020043.

    Article  CAS  Google Scholar 

  18. Rimkevich VS, Pushkin AA, Girenko IV, Eranskaya TY. Integrated fluoride processing of kyanite concentrates. Russ J Non Ferr Met. 2014;55:344–9. https://doi.org/10.3103/S1067821214040142.

    Article  Google Scholar 

  19. Sanghera JS, Hart P, Sachon MG, Ewing KJ, Aggarwal I. New fluorination reactions of ammonium bifluoride. J Am Ceram Soc. 1990;73:1339–46. https://doi.org/10.1111/j.1151-2916.1990.tb05202.x.

    Article  CAS  Google Scholar 

  20. Wang Y, Zhang Y, Liang G, Zhao X. Fabrication and properties of amorphous silica particles by fluorination of zircon using ammonium bifluoride. J Fluor Chem. 2020;232:109467. https://doi.org/10.1016/j.jfluchem.2020.109467.

    Article  CAS  Google Scholar 

  21. Abdel-Rehim AM. Application of thermal analysis to mineral synthesis. J Therm Anal. 1997;48:177–202. https://doi.org/10.1007/BF01978977.

    Article  CAS  Google Scholar 

  22. Dyachenko AN, Kraydenko RI, Malytin LN. Novel ammonium fluoride process for beryllium raw materials to produce hydroxide. Miner Eng. 2022;179:107439. https://doi.org/10.1016/j.mineng.2022.107439.

    Article  CAS  Google Scholar 

  23. Resentera AC, Rosales GD, Esquivel MR, Rodriguez MH. Thermal and structural analysis of the reaction pathways of α-spodumene with NH4HF2. Thermochim Acta. 2020;689:178609. https://doi.org/10.1016/j.tca.2020.178609.

    Article  CAS  Google Scholar 

  24. Silva Neto JB, Urano de Carvalho EF, Garcia RHL, Saliba-Silva AM, Riella HG, Durazzo M. Production of uranium tetrafluoride from the effluent generated in the reconversion via ammonium uranyl carbonate. Nucl Eng Technol. 2017;49:1711–6. https://doi.org/10.1016/j.net.2017.07.019.

    Article  CAS  Google Scholar 

  25. Kemp D, Cilliers AC. Fluorination of rare earth, thorium and uranium oxides and phosphates from monazite: a theoretical approach. Adv Mater Res. 2014;1019:439–45. https://doi.org/10.4028/www.scientific.net/AMR.1019.439.

    Article  CAS  Google Scholar 

  26. Claux B, Beneš O, Capelli E, Souček P, Meier R. On the fluorination of plutonium dioxide by ammonium hydrogen fluoride. J Fluor Chem. 2016;183:10–3. https://doi.org/10.1016/j.jfluchem.2015.12.009.

    Article  CAS  Google Scholar 

  27. Che Zainul Bahri CNA, Ab Ismail AF, Majid A. Synthesis of thorium tetrafluoride (ThF4) by ammonium hydrogen difluoride (NH4HF2). Nucl Eng Technol. 2019;51:792–9. https://doi.org/10.1016/j.net.2018.12.023.

    Article  CAS  Google Scholar 

  28. Wani BN, Patwe SJ, Rao URK, Kadam RM, Sastry MD. Fluorination of Sr2CuO3 by NH4HF2. Appl Supercond. 1995;3:321–5. https://doi.org/10.1016/0964-1807(95)00082-8Get.

    Article  CAS  Google Scholar 

  29. Smorokov AA, Kantaev AS, Borisov VA. Research of titanomagnetite concentrate decomposition by means of ammonium fluoride and ammonium hydrogen fluoride. AIP Conf Proc. 2019. https://doi.org/10.1063/1.5122921.

    Article  Google Scholar 

  30. Sophronov VL, Kalaev ME, Makaseev YN, Sachkov VI, Verkhoturova VV. Study on the process of Fe (III) oxide fluorination. IOP Conf Ser Mater Sci Eng. 2016;110:012069. https://doi.org/10.1088/1757-899X/110/1/012069.

    Article  Google Scholar 

  31. Pretorius CJ, du Plessis W, Nel JT, Crouse PL. Kinetics and thermodynamic parameters for the manufacturing of anhydrous zirconium tetrafluoride with ammonium acid fluoride as fluorinating. J South African Inst Min Metall. 2012;7A:601–4.

    Google Scholar 

  32. Sun Y, Yang X, Mei H, Li T. Synthesis of cerium tetrafluoride and cerium trifluoride nanoscale polycrystals from ammonium hydrogen difluoride. ACS Omega. 2021;6:11348–54. https://doi.org/10.1021/acsomega.1c00332.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Hao Z, Zhang J, Wang B, Zhang X. Synthesis of GdF3 from the Gd2O3-NH4HF2 system. Rare Met. 2007;26:482–7. https://doi.org/10.1016/S1001-0521(07)60249-6.

    Article  CAS  Google Scholar 

  34. Singh V, Srivastava VC. Hazardous maize processing industrial sludge: thermo-kinetic assessment and sulfur recovery by evaporation-condensation technique. J Hazard Mater. 2022;424:127477. https://doi.org/10.1016/j.jhazmat.2021.127477.

    Article  CAS  PubMed  Google Scholar 

  35. Cao H-Q, Jiang L, Duan Q-L, Zhang D, Chen H-D, Sun J-H. An experimental and theoretical study of optimized selection and model reconstruction for ammonium nitrate pyrolysis. J Hazard Mater. 2019;364:539–47. https://doi.org/10.1016/j.jhazmat.2018.10.048.

    Article  CAS  PubMed  Google Scholar 

  36. House JE, Rippon CS. A TG study of the decomposition of ammonium fluoride and ammonium bifluoride. Thermochim Acta. 1981;47:213–6. https://doi.org/10.1016/0040-6031(81)85108-8.

    Article  CAS  Google Scholar 

  37. Coats AW, Redfern JP. Kinetic parameters from thermogravimetric data. Nature. 1964;201:68–9. https://doi.org/10.1038/201068a0.

    Article  CAS  Google Scholar 

  38. House JE. A comparison of sample-to-sample variation in kinetic parameters obtained by different methods. Thermochim Acta. 1981;47:379–82. https://doi.org/10.1016/0040-6031(81)80119-0.

    Article  CAS  Google Scholar 

  39. Vyazovkin S, Burnham AK, Criado JM, Pérez-Maqueda LA, Popescu C, Sbirrazzuoli N. ICTAC kinetics committee recommendations for performing kinetic computations on thermal analysis data. Thermochim Acta Elsevier. 2011;520:1–19. https://doi.org/10.1016/j.tca.2011.03.034.

    Article  CAS  Google Scholar 

  40. Vyazovkin S, Burnham AK, Favergeon L, Koga N, Moukhina E, Pérez-Maqueda LA, et al. ICTAC kinetics committee recommendations for analysis of multi-step kinetics. Thermochim Acta. 2020;689:178597. https://doi.org/10.1016/j.tca.2020.178597.

    Article  CAS  Google Scholar 

  41. Vyazovkin S, Chrissafis K, Di Lorenzo ML, Koga N, Pijolat M, Roduit B, et al. ICTAC Kinetics committee recommendations for collecting experimental thermal analysis data for kinetic computations. Thermochim Acta. 2014;590:1–23. https://doi.org/10.1016/j.tca.2014.05.036.

    Article  CAS  Google Scholar 

  42. Vyazovkin S. Comments on multiple publications reporting single heating rate kinetics. Appl Organomet Chem. 2023. https://doi.org/10.1002/aoc.6929.

    Article  Google Scholar 

  43. Ebrahimi-Kahrizsangi R, Abbasi MH. Evaluation of reliability of Coats-Redfern method for kinetic analysis of non-isothermal TGA. Trans Nonferrous Met Soc China. 2008;18:217–21. https://doi.org/10.1016/S1003-6326(08)60039-4.

    Article  CAS  Google Scholar 

  44. Criado JM, Ortega A. A critical study of the reich and stivala method of kinetic analysis of TG traces. Thermochim Acta. 1981;44:239–43. https://doi.org/10.1016/0040-6031(81)80047-0.

    Article  CAS  Google Scholar 

  45. Pérez-Maqueda LA, Criado JM, Gotor FJ, Málek J. Advantages of combined kinetic analysis of experimental data obtained under any heating profile. J Phys Chem A. 2002;106:2862–8. https://doi.org/10.1021/jp012246b.

    Article  CAS  Google Scholar 

  46. Pérez-Maqueda LA, Criado JM, Sánchez-Jiménez PE. Combined kinetic analysis of solid-state reactions: a powerful tool for the simultaneous determination of kinetic parameters and the kinetic model without previous assumptions on the reaction mechanism. J Phys Chem A. 2006;110:12456–62. https://doi.org/10.1021/jp064792g.

    Article  CAS  PubMed  Google Scholar 

  47. Perejón A, Sánchez-Jiménez PE, García-Garrido C, Pérez-Maqueda LA. Kinetic study of complex processes composed of non-independent stages: pyrolysis of natural rubber. Polym Degrad Stab. 2021;188:109590. https://doi.org/10.1016/j.polymdegradstab.2021.109590.

    Article  CAS  Google Scholar 

  48. Muravyev NV, Koga N, Meerov DB, Pivkina AN. Kinetic analysis of overlapping multistep thermal decomposition comprising exothermic and endothermic processes: thermolysis of ammonium dinitramide. Phys Chem Chem Phys. 2017;19:3254–64. https://doi.org/10.1039/C6CP08218A.

    Article  CAS  PubMed  Google Scholar 

  49. Sánchez-Jiménez PE, del Rodríguez-Laguna MR, Pérez-Maqueda LA, Criado JM. Comments on Pyrolysis kinetics of biomass from product information (applied energy 110 (2013) 1–8) regarding the inability to obtain meaningful kinetic parameters from a single non-isothermal curve. Appl Energy. 2014;125:132–5. https://doi.org/10.1016/j.apenergy.2014.03.034.

    Article  CAS  Google Scholar 

  50. Prado JR, Vyazovkin S. Activation energies of water vaporization from the bulk and from laponite, montmorillonite, and chitosan powders. Thermochim Acta. 2011. https://doi.org/10.1016/j.tca.2011.06.005.

    Article  Google Scholar 

  51. Sbirrazzuoli N, Vecchio S, Catalani A. Isoconversional kinetic study of alachlor and metolachlor vaporization by thermal analysis. Int J Chem Kine. 2005;37:74–80. https://doi.org/10.1002/kin.20054.

    Article  CAS  Google Scholar 

  52. Suşeska M, Rajiş M, Matečiş-Mušan S, Zeman S, Jalový Z. Kinetics and heats of sublimation and evaporation of 1,3,3-trinitroazetidine (TNAZ). J Therm Anal Calorim [Internet]. 2003;74:853–66. https://doi.org/10.1023/B:JTAN.0000011017.65451.96.

    Article  Google Scholar 

  53. Selvakumar J, Raghunathan VS, Nagaraja KS. Sublimation kinetics of scandium β-diketonates. J Therm Anal Calorim. 2010;100:155–61. https://doi.org/10.1007/s10973-009-0167-4.

    Article  CAS  Google Scholar 

  54. Vyazovkin S. Isoconversional kinetics of thermally stimulated processes. Springer. 2015. https://doi.org/10.1007/978-3-319-14175-6.

    Article  Google Scholar 

  55. Kiselev VG, Muravyev NV, Monogarov KA, Gribanov PS, Asachenko AF, Fomenkov IV. Toward reliable characterization of energetic materials: interplay of theory and thermal analysis in the study of the thermal stability of tetranitroacetimidic acid (TNAA). Phys Chem Chem Phys. 2018;20:29285–98. https://doi.org/10.1039/C8CP05619F.

    Article  CAS  PubMed  Google Scholar 

  56. Zhou D, Schmitt EA, Zhang GGZ, Law D, Wight CA, Vyazovkin S, et al. Model-free treatment of the dehydration kinetics of nedocromil sodium trihydrate. J Pharm Sci. 2003;92:1367–76. https://doi.org/10.1002/jps.10400.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank to Secretaría de Investigación, Internacionales y Posgrado—Universidad Nacional de Cuyo, CONICET and Universidad Nacional del Comahue (PI B202), for partial funding of the present work.

Author information

Authors and Affiliations

Authors

Contributions

ACR: Conceptualization, Methodology, Validation, Formal analysis, Investigation, Software, Writing—Original Draft, Writing—Review & Editing. MRE: Investigation, Resources, Visualization, Writing—Review & Editing, Supervision, Project administration, Funding acquisition. MHR: Investigation, Resources, Visualization, Writing—Review & Editing, Supervision, Project administration, Funding acquisition.

Corresponding authors

Correspondence to Alexander C. Resentera or Mario H. Rodriguez.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1879 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Resentera, A.C., Esquivel, M.R. & Rodriguez, M.H. New insights into the thermal behavior and stability of ammonium bifluoride: non-isothermal thermokinetic analysis. J Therm Anal Calorim 148, 4333–4344 (2023). https://doi.org/10.1007/s10973-023-12054-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-023-12054-y

Keywords

Navigation