Skip to main content
Log in

Synthesis, properties and thermal degradation mechanism of bisphenol A-based polyarylates capped with p-tert-butylphenol

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

A series of bisphenol A-based polyarylates was synthesized by using 2,2-bis (4-hydroxyphenyl) propane (BPA), terephthaloyl dichloride (TPC), and isophthaloyl dichloride (IPC) as raw materials and p-tert-butylphenol as a capping agent through interfacial polymerization to investigate the effect of end group structure on polymer properties. And the polymer films could be obtained by solvent casting method. The successful introduction of p-tert-butylphenol into the backbone adjusted molecular masses and achieved a regulable improvement of the polymer’s thermal properties. The thermal mass loss 5% temperature of the polymers raised above 470 °C, which indicated the thermal properties were broadly in line with that of the commercial product U-100. Besides, the addition of capping agent also improved the light transmission of the polymers and the transmittance reached above 83% at a wavelength of 450 nm. In addition, the thermal degradation mechanism of polyarylate and U-100 was investigated by simultaneous thermal analysis (STA)-IR and Py/GC–MS. It was discovered that PAR decomposed thermally at their end groups and ester groups first, followed by the breakage of their carbon–carbon bonds, which coincided with U-100’s thermal degradation mechanism. The thermal degradation mechanism of bisphenol A-based polyarylates was proposed.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Diepens M, Gijsman P. Photostabilizing of bisphenol A polycarbonate by using UV-absorbers and self protective block copolymers based on resorcinol polyarylate blocks. Polym Degra Stab. 2009;94(10):1808–13. https://doi.org/10.1016/j.polymdegradstab.2009.06.008.

    Article  CAS  Google Scholar 

  2. Gao C, Wei M-H, Liu X-L, Huang Z-Z, Sheng S-R. Preparation and characterization of new aromatic poly(ether ester)s bearing cardo xanthene groups. High Perform Polym. 2016;29(10):1185–91. https://doi.org/10.1177/0954008316672292.

    Article  CAS  Google Scholar 

  3. Zhang Y, Yan GM, Zhang G, Liu SL, Yang J. Synthesis of high transparency polyarylates containing cyclohexane group. Polymer. 2020;186:122047. https://doi.org/10.1016/j.polymer.2019.122047.

    Article  CAS  Google Scholar 

  4. Zhang Y, Lei Z, Yan GM, Yang J, Zhang G. Syntheses and properties of novel polyarylates with ethyl units as a side group. Mater Today Commun. 2021;28:102643. https://doi.org/10.1016/j.mtcomm.2021.102643.

    Article  CAS  Google Scholar 

  5. Nagane SS, Verma S, Tawade BV, Sane PS, Dhanmane SA, Wadgaonkar PP. Aromatic polyesters containing pendant azido groups: synthesis, characterization, chemical modification and thermal cross-linking. Eur Polym J. 2019;116:180–9. https://doi.org/10.1016/j.eurpolymj.2019.04.019.

    Article  CAS  Google Scholar 

  6. Lu HR, Li DS, Zhang Y, Wu ZF, Wang H, Liu SL, et al. Design of low dielectric constant and high transparent polyarylate containing spiral ring. Polymer. 2021;228:123948. https://doi.org/10.1016/j.polymer.2021.123948.

    Article  CAS  Google Scholar 

  7. Liu PQ, Zeng LX, Ye GD, Xu JJ. Bisphenol A-based co-polyarylates: synthesis, properties and thermal decomposition mechanism. J Polym Res. 2013;20(10):279. https://doi.org/10.1007/s10965-013-0279-1.

    Article  CAS  Google Scholar 

  8. Meng S, Sun N, Su K, Zhao X, Wang D, Zhou H, et al. Novel organosoluble polyarylates based on diphenylamine-fluorene units. High Perform Polym. 2017;30(7):864–71. https://doi.org/10.1177/0954008317734033.

    Article  CAS  Google Scholar 

  9. Guan XH, Nie HR, Wang HH, Zhao JY, Wang ZP, Zhou GY, et al. High-performance soluble copolyarylate based on phenolphthalein: synthesis, characterization and properties. Polym Int. 2019;68(10):1729–38. https://doi.org/10.1002/pi.5879.

    Article  CAS  Google Scholar 

  10. James NR, Ramesh C, Sivaram S. Crystallization and solid-state polymerization of poly(aryl ester)s. Polym Int. 2004;53(6):664–9. https://doi.org/10.1002/pi.1397.

    Article  CAS  Google Scholar 

  11. Honkhambe PN, Bhairamadgi NS, Biyani MV, Wadgaonkar PP, Salunkhe MM. Synthesis and characterization of new aromatic polyesters containing cardo decahydronaphthalene groups. Eur Polym J. 2010;46(4):709–18. https://doi.org/10.1016/j.eurpolymj.2009.12.028.

    Article  CAS  Google Scholar 

  12. Higashi F, Takakura T, Sumi Y. Copolycondensation of various compositions of isophthalic acid and terephthalic acid with hydroquinones or bisphenols by tosyl chloride/dimethylformamide/pyridine. J Polym Sci Part A: Polym Chem. 2004;42(10):2321–8. https://doi.org/10.1002/pola.20070.

    Article  CAS  Google Scholar 

  13. Wu ZF, Zhang G, Yan GM, Lu JH, Yang J. Aromatic polyesters containing different content of Thioether and methyl units: facile synthesis and properties. J Polym Res. 2018;25(8):170. https://doi.org/10.1007/s10965-018-1563-x.

    Article  CAS  Google Scholar 

  14. Hanson KG, Lin C-H, Abu-Omar MM. Preparation and properties of renewable polyesters based on lignin-derived bisphenol. Polymer. 2021;233:124202. https://doi.org/10.1016/j.polymer.2021.124202.

    Article  CAS  Google Scholar 

  15. Sun HX, Bao SS, Zhao HR, Chen YH, Wang YX, Jiang C, et al. Polyarylate membrane with special circular microporous structure by interfacial polymerization for gas separation. Sep Purif Technol. 2020;251:117370. https://doi.org/10.1016/j.seppur.2020.117370.

    Article  CAS  Google Scholar 

  16. Liou GS, Lin SM, Yen HJ. Synthesis and photoluminescence properties of novel polyarylates bearing pendent naphthylamine chromophores. Eur Polym J. 2008;44(8):2608–18. https://doi.org/10.1016/j.eurpolymj.2008.05.032.

    Article  CAS  Google Scholar 

  17. Liu PQ, Wu T, Shi MW, Ye GD, Xu JJ. Synthesis and characterization of readily soluble polyarylates derived from either 1,1-bis(4-hydroxyphenyl)-1-phenylethane or tetramethylbisphenol A and aromatic diacid chlorides. J Appl Polym Sci. 2011;119(4):1923–30. https://doi.org/10.1002/app.32914.

    Article  CAS  Google Scholar 

  18. Jimenez-Solomon MF, Song Q, Jelfs KE, Munoz-Ibanez M, Livingston AG. Polymer nanofilms with enhanced microporosity by interfacial polymerization. Nat Mater. 2016;15(7):760–7. https://doi.org/10.1038/nmat4638.

    Article  CAS  PubMed  Google Scholar 

  19. Kenneth EA, Ranganathan T. Deoxybenzoin-based polyarylates as halogen-free fire-resistant polymers. Macromolecules. 2006;39:3553–8. https://doi.org/10.1021/ma052777o.

    Article  CAS  Google Scholar 

  20. Ryu BY, Emrick T. Thermally induced structural transformation of bisphenol-1,2,3-triazole polymers: smart, self-extinguishing materials. Angew Chem Int Ed Engl. 2010;49(50):9644–7. https://doi.org/10.1002/anie.201005456.

    Article  CAS  PubMed  Google Scholar 

  21. Zhang PF, Xing X, Wang YY, Murtaza I, He YW, Cameron J, et al. Multi-colour electrochromic materials based on polyaromatic esters with low driving voltage. J Mater Chem C. 2019;7(31):9467–73. https://doi.org/10.1039/c9tc02919b.

    Article  CAS  Google Scholar 

  22. Ren D, Li YH, Ren SP, Liu TY, Wang XL. Microporous polyarylate membrane with nitrogen-containing heterocycles to enhance separation performance for organic solvent nanofiltration. J Membrane Sci. 2020;610:118295. https://doi.org/10.1016/j.memsci.2020.118295.

    Article  CAS  Google Scholar 

  23. Ren HH, Li PC, Wu YN, Hu JB, Zhang G, Yan YG. Semi-aromatic copoly(ether ether amide): synthesis and properties. J Appl Polym Sci. 2021;138(37):50940. https://doi.org/10.1002/app.50940.

    Article  CAS  Google Scholar 

  24. Meylemans HA, Groshens TJ, Harvey BG. Synthesis of renewable bisphenols from creosol. Chemsuschem. 2012;5(1):206–10. https://doi.org/10.1002/cssc.201100402.

    Article  CAS  PubMed  Google Scholar 

  25. Cai WN, Wu XT, Xiao TD, Niu HJ, Bai XD, Wang C, et al. Synthesis and optoelectronic properties of new polyarylates with 2-naphthyldiphenylamine units. Appl Surf Sci. 2018;431:187–96. https://doi.org/10.1016/j.apsusc.2017.07.008.

    Article  CAS  Google Scholar 

  26. Wang C, Tang Y, Zhou Y, Zhang Y, Kong J, Gu J, et al. Cyanate ester resins toughened with epoxy-terminated and fluorine-containing polyaryletherketone. Polymer Chem-uk. 2021;12(26):3753–61. https://doi.org/10.1039/d1py00597a.

    Article  CAS  Google Scholar 

  27. Shen M, Vijjamarri S, Cao H, Solis K, Robertson ML. Degradability, thermal stability, and high thermal properties in spiro polycycloacetals partially derived from lignin. Polym Chem. 2021;12(41):5986–98. https://doi.org/10.1039/d1py01017d.

    Article  CAS  Google Scholar 

  28. Guo W, Leu W-T, Hsiao S-H, Liou G-S. Thermal degradation behaviour of aromatic poly(ester-amide) with pendant phosphorus groups investigated by pyrolysis-GC/MS. Polym Degra Stab. 2006;91(1):21–30. https://doi.org/10.1016/j.polymdegradstab.2005.04.026.

    Article  CAS  Google Scholar 

  29. Ranganathan T, Beaulieu M, Zilberman J, Smith KD, Westmoreland PR, Farris RJ, et al. Thermal degradation of deoxybenzoin polymers studied by pyrolysis-gas chromatography/mass spectrometry. Polym Degra Stab. 2008;93(6):1059–66. https://doi.org/10.1016/j.polymdegradstab.2008.03.021.

    Article  CAS  Google Scholar 

  30. Zhang R, Zong L, Wang J, Jian X. Fully bio-based furyl-functionalized bisphenols and bio-based cross-linking poly(aryl ether ketone)s with high biomass content, thermo-reversibility, excellent processing and mechanical properties. Polym Degra Stab. 2022;200:109961. https://doi.org/10.1016/j.polymdegradstab.2022.109961.

    Article  CAS  Google Scholar 

  31. Gonçalves Nunes WD, Mannochio Russo H, da Silva BV, Caires FJ. Thermal characterization and compounds identification of commercial Stevia rebaudiana Bertoni sweeteners and thermal degradation products at high temperatures by TG–DSC, IR and LC–MS/MS. J Therm Anal Calorim. 2020;146(3):1149–55. https://doi.org/10.1007/s10973-020-10104-3.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization was contributed by SD,PS; methodology was contributed by ZW; formal analysis and investigation were contributed by SD, JS; writing—original draft preparation, was contributed by SD; writing—review and editing, was contributed by PS, ZJ, and YC; resources was contributed by XL, YL; Supervision was contributed by ZW, YL.

Corresponding authors

Correspondence to Zhiyong Wei or Yang Li.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2436 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dai, S., Song, P., Jiao, Z. et al. Synthesis, properties and thermal degradation mechanism of bisphenol A-based polyarylates capped with p-tert-butylphenol. J Therm Anal Calorim 148, 4211–4221 (2023). https://doi.org/10.1007/s10973-023-12047-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-023-12047-x

Keywords

Navigation