Skip to main content
Log in

Molecular dynamics insight into the best governing mechanism for thermophysical properties changes in nanofluids

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Extensive studies on the thermophysical behavior of nanofluids have been conducted so far; however, the mechanisms behind the change in the thermophysical properties of nanofluids remain unclear. In this study, the influences of Brownian motions of nanoparticles, induced micro-convection, interfacial nanolayer and ballistic phonon transport mechanisms on improving the thermophysical and rheological properties of Cu–water nanofluids were investigated using equilibrium and non-equilibrium molecular dynamics simulations. For this purpose, the nanoparticle was dispersed in the base fluid in three different cases: free, fixed and fixed-rigid. Then, the fundamental and nanostructural properties of nanofluids such as fluid velocity contours, number (mass) density, potential energy, temperature gradient inside and around the nanoparticle and random motions of the nanoparticle were analyzed to explore the best mechanism for thermophysical and rheological properties changes in nanofluids. The SPC/E model was used to calculate the interactions between water molecules, while the embedded-atom-method potential was applied for Cu–Cu interatomic interactions. The nanofluids were created by dispersing spherical Cu nanoparticles with a diameter of 2.6 nm in liquid water at 6.5 vol%. The results showed that the shear viscosity and thermal conductivity of nanofluid increased by 38.47% and 6.5%, respectively, compared to the base fluid, while the self-diffusion coefficient decreased by 18.24%. It was also found that the Brownian motion of nanoparticles, ballistic phonon transport and micro-convection mechanisms have no significant effect on the thermophysical properties of nanofluid. According to the results, it was concluded that the formation of the interfacial nanolayer around nanoparticles is the key most important factor in improving the thermophysical properties of nanofluids and the properties of this layer can have a considerable effect on the nanofluid properties. It was explained that the interatomic interactions between the nanoparticle atoms and the base fluid play a key role in forming the interfacial nanolayer structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Availability of data and materials

Applicable.

Abbreviations

\(D\) :

Diffusion coefficient (m2 s1)

\(J\) :

Heat flux (W m2)

\({K}_{\mathrm{B}}\) :

Boltzmann’s constant (kJ K1)

\(l\) :

Bond length (Å)

N :

Number of atoms

\({P}_{\mathrm{xy}}\) :

Off-diagonal element of the stress tensor (Pa)

\(q\) :

Point charge (e)

\({r}_{\mathrm{i}}\) :

Atomic coordinates (Å)

\(r\) :

Radius (Å)

T :

Temperature (K)

t :

Time (fs)

\(U\) :

Potential energy (kJ mol1)

\(V\) :

Volume (Å3)

X :

x-Direction (Å)

Y :

y-Direction (Å)

Z :

z-Direction (Å)

\(\lambda\) :

Thermal conductivity (W m−1 K−1)

\(\eta\) :

Shear viscosity (Pa s)

\(\epsilon\) :

Well depth (kJ mol1)

\(\sigma\) :

Lennard–Jones parameter (Å)

α :

Heat flux direction (m)

\({\varepsilon }_{0}\) :

Permittivity of vacuum

\({\theta }_{\mathrm{HOH}}^{^\circ }\) :

Angle (deg)

EAM:

Embedded-atom-method

EMD:

Equilibrium molecular dynamics

GK:

Green Kubo

LJ:

Lennard–Jones

MD:

Molecular dynamics

MSD:

Mean square displacement

NEMD:

Non-equilibrium molecular dynamics

NF:

Nanofluid

NpT:

Isothermal–isobaric ensemble

NVE:

Microcanonical ensemble

NVT:

Canonical ensemble

SACF:

Autocorrelation function of stress tensor

References

  1. Ravi KJ, Vinod K. Nanofluids: a promising future. J Chem Pharm Sci 57–61 (2014)

  2. Ding Y, Chen H, Wang L, Yang C-Y, He Y, Yang W, et al. Heat transfer intensification using nanofluids. KONA Powder Part J. 2007;25:23–38.

    Article  CAS  Google Scholar 

  3. Ghosh GK. Heat transfer mechanisms in nanofluids: a review. Int J Sci Res. 2016;5:1253–8.

    Google Scholar 

  4. Wang X-Q, Mujumdar AS. A review on nanofluids—part I: theoretical and numerical investigations. Brazilian J Chem Eng. 2008;25:613–30.

    Article  CAS  Google Scholar 

  5. Sergis A, Hardalupas Y. Molecular dynamic simulations of a simplified nanofluid. Comput Methods Sci Technol. 2014;20:113–27.

    Article  Google Scholar 

  6. Lou Z, Yang M. Molecular dynamics simulations on the shear viscosity of Al2O3 nanofluids. Comput Fluids. 2015;117:17–23. https://doi.org/10.1016/j.compfluid.2015.05.006.

    Article  CAS  Google Scholar 

  7. Ashrafmansouri S-S, Nasr EM. Mass transfer in nanofluids: a review. Int J Therm Sci. 2014;82:84–99. https://doi.org/10.1016/j.ijthermalsci.2014.03.017.

    Article  CAS  Google Scholar 

  8. Gupta HK, Agrawal GD, Mathur J. An overview of Nanofluids: A new media towards green environment. Int J Environ Sci. 2012;3:433–40.

    CAS  Google Scholar 

  9. Fujiwara K, Daimo M, Ueki Y, Ohara T, Shibahara M. Thermal conductivity of nanofluids: a comparison of EMD and NEMD calculations. Int J Heat Mass Transf. 2019;144:118695. https://doi.org/10.1016/j.ijheatmasstransfer.2019.118695.

    Article  CAS  Google Scholar 

  10. Ahmadi MH, Mirlohi A, Alhuyi Nazari M, Ghasempour R. A review of thermal conductivity of various nanofluids. J Mol Liq. 2018;265:181–8. https://doi.org/10.1016/j.molliq.2018.05.124.

    Article  CAS  Google Scholar 

  11. Khoshvaght-Aliabadi M, Alizadeh A. An experimental study of Cu–water nanofluid flow inside serpentine tubes with variable straight-section lengths. Exp Therm Fluid Sci. 2015;61:1–11. https://doi.org/10.1016/j.expthermflusci.2014.09.014.

    Article  CAS  Google Scholar 

  12. Khoshvaght-Aliabadi M, Davoudi S, Dibaei MH. Performance of agitated-vessel U tube heat exchanger using spiky twisted tapes and water based metallic nanofluids. Chem Eng Res Des. 2018;133:26–39. https://doi.org/10.1016/j.cherd.2018.02.030.

    Article  CAS  Google Scholar 

  13. Wang X, Jing D. Determination of thermal conductivity of interfacial layer in nanofluids by equilibrium molecular dynamics simulation. Int J Heat Mass Transf. 2019;128:199–207.

    Article  CAS  Google Scholar 

  14. Jang SP, Choi SUS. Role of Brownian motion in the enhanced thermal conductivity of nanofluids. Appl Phys Lett. 2004;84:4316–8. https://doi.org/10.1063/1.1756684.

    Article  CAS  Google Scholar 

  15. Xuan Y, Li Q, Hu W. Aggregation structure and thermal conductivity of nanofluids. AIChE J. 2003;49:1038–43. https://doi.org/10.1002/aic.690490420.

    Article  CAS  Google Scholar 

  16. Yu W, Choi SUS. The role of interfacial layers in the enhanced thermal conductivity of nanofluids: a renovated maxwell model. J Nanoparticle Res. 2003;5:167–71. https://doi.org/10.1023/A:1024438603801.

    Article  CAS  Google Scholar 

  17. Xie H, Fujii M, Zhang X. Effect of interfacial nanolayer on the effective thermal conductivity of nanoparticle-fluid mixture. Int J Heat Mass Transf. 2005;48:2926–32.

    Article  CAS  Google Scholar 

  18. Fang X, Xuan Y, Li Q. Experimental investigation on enhanced mass transfer in nanofluids. Appl Phys Lett. 2009;95:203108. https://doi.org/10.1063/1.3263731.

    Article  CAS  Google Scholar 

  19. Gerardi C, Cory D, Buongiorno J, Hu L-W, McKrell T. Nuclear magnetic resonance-based study of ordered layering on the surface of alumina nanoparticles in water. Appl Phys Lett. 2009;95:253104. https://doi.org/10.1063/1.3276551.

    Article  CAS  Google Scholar 

  20. Feng X, Johnson DW. Mass transfer in SiO2 nanofluids: A case against purported nanoparticle convection effects. Int J Heat Mass Transf. 2012;55:3447–53. https://doi.org/10.1016/j.ijheatmasstransfer.2012.03.009.

    Article  CAS  Google Scholar 

  21. Chen X. Molecular dynamics simulation of nanofluidics. Rev Chem Eng. 2018;34:875–85. https://doi.org/10.1515/revce-2016-0060/html.

    Article  Google Scholar 

  22. Zhang L, Tian L, Zhang A, Jing Y, Qu P. Molecular dynamics simulations of the effects of a nanoparticle surface adsorption layer on the thermal conductivity of a Cu–Ar Nanofluid. Int J Thermophys. 2021;42:44. https://doi.org/10.1007/s10765-021-02794-0.

    Article  CAS  Google Scholar 

  23. Li Y, Zhai Y, Ma M, Xuan Z, Wang H. Using molecular dynamics simulations to investigate the effect of the interfacial nanolayer structure on enhancing the viscosity and thermal conductivity of nanofluids. Int Commun Heat Mass Transf. 2021;122:105181. https://doi.org/10.1016/j.icheatmasstransfer.2021.105181.

    Article  CAS  Google Scholar 

  24. Mohebbi A. Prediction of specific heat and thermal conductivity of nanofluids by a combined equilibrium and non-equilibrium molecular dynamics simulation. J Mol Liq. 2012;175:51–8. https://doi.org/10.1016/j.molliq.2012.08.010.

    Article  CAS  Google Scholar 

  25. Sedighi M, Mohebbi A. Investigation of nanoparticle aggregation effect on thermal properties of nanofluid by a combined equilibrium and non-equilibrium molecular dynamics simulation. J Mol Liq. 2014;197:14–22. https://doi.org/10.1016/j.molliq.2014.04.019.

    Article  CAS  Google Scholar 

  26. Lee SL, Saidur R, Sabri MFM, Min TK. Molecular dynamic simulation: studying the effects of Brownian motion and induced micro-convection in nanofluids. Numer Heat Transf Part A Appl. 2016;69:643–58. https://doi.org/10.1080/10407782.2015.1090765.

    Article  Google Scholar 

  27. Azimi SS, Kalbasi M. A molecular dynamics simulation of Brownian motion of a nanoparticle in a nanofluid. Nanoscale Microscale Thermophys Eng. 2017;21:263–77. https://doi.org/10.1080/15567265.2017.1286420.

    Article  CAS  Google Scholar 

  28. Wu L, Keer LM, Lu J, Song B, Gu L. Molecular dynamics simulations of the rheological properties of graphene–PAO nanofluids. J Mater Sci. 2018;53:15969–76. https://doi.org/10.1007/s10853-018-2756-8.

    Article  CAS  Google Scholar 

  29. Zhai Y, Li Y, Xuan Z, Li Z, Wang H. Determination of heat transport mechanism using nanoparticle property and interfacial nanolayer in a nanofluidic system. J Mol Liq. 2021;344:117787. https://doi.org/10.1016/j.molliq.2021.117787.

    Article  CAS  Google Scholar 

  30. Rao Z, Ye K, Wang H, Liao S. Effects of interface layer on the thermophysical properties of solar salt-SiO2 nanofluids: a molecular dynamics simulation. Int J Energy Res. 2021;45:13323–37. https://doi.org/10.1002/er.6659.

    Article  CAS  Google Scholar 

  31. Vega C, Abascal JLF, Conde MM, Aragones JL. What ice can teach us about water interactions: a critical comparison of the performance of different water models. Faraday Discuss. 2009;141:251–76.

    Article  CAS  PubMed  Google Scholar 

  32. Sirk TW, Moore S, Brown EF. Characteristics of thermal conductivity in classical water models. J Chem Phys. 2013;138:064505. https://doi.org/10.1063/1.4789961.

    Article  CAS  PubMed  Google Scholar 

  33. Foiles SM, Baskes MI, Daw MS. Embedded-atom-method functions for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, and their alloys. Phys Rev B. 1986;33:7983–91. https://doi.org/10.1103/PhysRevB.33.7983.

    Article  CAS  Google Scholar 

  34. Kang H, Zhang Y, Yang M. Molecular dynamics simulation of thermal conductivity of Cu–Ar nanofluid using EAM potential for Cu–Cu interactions. Appl Phys A. 2011;103:1001–8. https://doi.org/10.1007/s00339-011-6379-z.

    Article  CAS  Google Scholar 

  35. Fuentes-Azcatl R, Mendoza N, Alejandre J. Improved SPC force field of water based on the dielectric constant: SPC. Phys A Stat Mech Appl. 2015;420:116–23.

    Article  CAS  Google Scholar 

  36. Abbasi M, Heyhat MM, Rajabpour A. Study of the effects of particle shape and base fluid type on density of nanofluids using ternary mixture formula: A molecular dynamics simulation. J Mol Liq. 2020;305:112831. https://doi.org/10.1016/j.molliq.2020.112831.

    Article  CAS  Google Scholar 

  37. Lv J, Bai M, Cui W, Li X. The molecular dynamic simulation on impact and friction characters of nanofluids with many nanoparticles system. Nanoscale Res Lett. 2011;6:200.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Liao J, Zhang A, Qing S, Zhang X, Luo Z. Investigation on the aggregation structure of nanoparticle on the thermal conductivity of nanofluids by molecular dynamic simulations. Powder Technol. 2022;395:584–91. https://doi.org/10.1016/j.powtec.2021.10.007.

    Article  CAS  Google Scholar 

  39. Erdős M, Frangou M, Vlugt TJH, Moultos OA. Diffusivity of α-, β-, γ-cyclodextrin and the inclusion complex of β-cyclodextrin: Ibuprofen in aqueous solutions; a molecular dynamics simulation study. Fluid Phase Equilib. 2021;528:112842. https://doi.org/10.1016/j.fluid.2020.112842.

    Article  CAS  PubMed  Google Scholar 

  40. Boyd SJ, Krishnan Y, Ghaani MR, English NJ. Influence of external static and alternating electric fields on self-diffusion of water from molecular dynamics. J Mol Liq. 2021;327:114788. https://doi.org/10.1016/j.molliq.2020.114788.

    Article  CAS  Google Scholar 

  41. Lee SH, Kim J. Transport properties of bulk water at 243–550 K: a comparative molecular dynamics simulation study using SPC/E, TIP4P, and TIP4P/2005 water models. Mol Phys. 2019;117:1926–33. https://doi.org/10.1080/00268976.2018.1562123.

    Article  CAS  Google Scholar 

  42. Loya A, Ren G. Molecular dynamics simulation study of rheological properties of CuO–water nanofluid. J Mater Sci. 2015;50:4075–82. https://doi.org/10.1007/s10853-015-8963-7.

    Article  CAS  Google Scholar 

  43. Bergman TL, Incropera FP, DeWitt DP, Lavine AS. Fundamentals of heat and mass transfer. 8th ed. Hoboken: Wiley; 2018.

    Google Scholar 

  44. Chen J, Han K, Wang S, Liu X, Wang P, Chen J. Investigation of enhanced thermal properties of Cu Ar nanofluids by reverse non equilibrium molecular dynamics method. Powder Technol. 2019;356:559–65. https://doi.org/10.1016/j.powtec.2019.08.051.

    Article  CAS  Google Scholar 

  45. Zhang M, Lussetti E, de Souza LES, Müller-Plathe F. Thermal conductivities of molecular liquids by reverse nonequilibrium molecular dynamics. J Phys Chem B. 2005;109:15060–7. https://doi.org/10.1021/jp0512255.

    Article  CAS  PubMed  Google Scholar 

  46. Jabbari F, Rajabpour A, Saedodin S. Thermal conductivity and viscosity of nanofluids: a review of recent molecular dynamics studies. Chem Eng Sci. 2017;174:67–81. https://doi.org/10.1016/j.ces.2017.08.034.

    Article  CAS  Google Scholar 

  47. Orsi M. Comparative assessment of the ELBA coarse-grained model for water. Mol Phys. 2014;112:1566–76. https://doi.org/10.1080/00268976.2013.844373.

    Article  CAS  Google Scholar 

  48. Holz M, Heil SR, Sacco A. Temperature-dependent self-diffusion coefficients of water and six selected molecular liquids for calibration in accurate 1H NMR PFG measurements. Phys Chem Chem Phys. 2000;2:4740–2.

    Article  CAS  Google Scholar 

  49. Korson L, Drost-Hansen W, Millero FJ. Viscosity of water at various temperatures. J Phys Chem. 1969;73:34–9. https://doi.org/10.1021/j100721a006.

    Article  CAS  Google Scholar 

  50. Haynes WM. CRC Handbook of Chemistry and Physics 95th Edition (Internet Version 2015). CRC/Taylor Francis. 2015.

  51. González MA, Abascal JLF. The shear viscosity of rigid water models. J Chem Phys. 2010;132:096101. https://doi.org/10.1063/1.3330544.

    Article  CAS  PubMed  Google Scholar 

  52. Belashchenko DK. Computer simulation of liquid metals. Uspekhi Fiz Nauk. 2013;183:1281–322.

    Article  Google Scholar 

  53. Demin MM, Koroleva ON, Aleksashkina AA, Mazhukin VI. Molecular-dynamic modeling of thermophysical properties of phonon subsystem of copper in wide temperature range. Math Montisnigri. 2020;47:137–51.

    Article  Google Scholar 

  54. Feng B, Li Z, Zhang X. Role of phonon in the thermal and electrical transports in metallic nanofilms. J Appl Phys. 2009;105:104315. https://doi.org/10.1063/1.3129707.

    Article  CAS  Google Scholar 

  55. Damasceno DA, Mesquita E, Rajapakse RNKD. Mechanical behavior of nano structures using atomic-scale finite element method (AFEM). Lat Am J Solids Struct. 2017;14:2046–66.

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to express their appreciation to the management of computer center of Chemical Engineering Department, Shahid Bahonar University of Kerman, Kerman, Iran, for supporting this work.

Funding

No funds, grants or other support was received.

Author information

Authors and Affiliations

Authors

Contributions

HD was involved in investigation, methodology, writing—original draft preparation, software. AM helped in conceptualization, supervision, writing—review and editing.

Corresponding author

Correspondence to Ali Mohebbi.

Ethics declarations

Conflicts of interest

The authors declare no competing financial interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dorrani, H., Mohebbi, A. Molecular dynamics insight into the best governing mechanism for thermophysical properties changes in nanofluids. J Therm Anal Calorim 148, 4359–4375 (2023). https://doi.org/10.1007/s10973-023-12019-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-023-12019-1

Keywords

Navigation