Skip to main content
Log in

Thermal Characteristics of fine grained concrete with various percentages of basalt fiber and GGBS

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The construction of energy-efficient buildings is very important as it can lower the energy consumed for construction and reduce the energy required for the heating and cooling effects of buildings and reduce the global warming caused by carbon emissions in buildings. It is therefore necessary to check the thermal characteristics of any construction material. Chopped Basalt Fiber (BF) is dispersed to the fine-grained concrete matrix and after determining the optimum percentage of fiber content cement is partially replaced in the matrix with ground granulated blast furnace slag (GGBS) by different percentages. GGBS helps in providing improved structural performance and also reduces the waste material generated by the steel industry. In addition, thermogravimetric analysis (TGA) is done to ascertain the thermal stability of the material when subjected to higher temperatures. The thermal conductivity of fine-grained concrete is determined to check the conductance of heat through the sample for thermal evaluation of the structure. Furthermore, the specific heat capacity, thermal resistance and thermal diffusivity of the material are also studied. The fine-grained concrete with basalt fiber and GGBS shows better thermal properties than controlled fine-grained concrete.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Shelote KM, Gavali HR, Bras A, Ralegaonkar RV. Utilization of co-fired blended ash and chopped basalt fiber in the development of sustainable mortar. Sustainability. 2021;13:1247.

    Article  CAS  Google Scholar 

  2. Li M, Liu G, Mu Q, Wu J. The effect of basalt fiber on mechanical properties of slag cementing slurries. J Adhes Sci Technol. 2020;34:1442–53.

    Article  CAS  Google Scholar 

  3. Asprone D, Cadoni E, Iucolano F, Prota A. Analysis of the strain-rate behavior of a basalt fiber reinforced natural hydraulic mortar. Cement Concr Compos. 2014;53:52–8.

    Article  CAS  Google Scholar 

  4. Qin J, Qian J, Li Z, You C, Dai X, Yue Y, et al. Mechanical properties of basalt fiber reinforced magnesium phosphate cement composites. Constr Build Mater. 2018;188:946–55.

    Article  CAS  Google Scholar 

  5. Jiang CH, McCarthy TJ, Chen D, Dong QQ. Influence of basalt fiber on performance of cement mortar. KEM. 2010;426–427:93–6.

    Article  Google Scholar 

  6. Ralegaonkar R, Gavali H, Aswath P, Abolmaali S. Application of chopped basalt fibers in reinforced mortar: a review. Constr Build Mater. 2018;164:589–602.

    Article  Google Scholar 

  7. Neelamegam P, Muthusubramanian B. A classic critique on concrete adsorbing pollutants emitted by automobiles and statistical envision using trend analysis. Environ Sci Pollut Res Internet. 2021 cited 2022 Feb 15; Available from: https://link.springer.com/https://doi.org/10.1007/s11356-021-15962-4.

  8. Sabitha D, Dattatreya JK, Sakthivel N, Bhuvaneshwari M. Assessment of reactivity of energy efficient high volume fly ash based geopolymers through various approaches. Sādhanā. 2020;45:178.

    Article  CAS  Google Scholar 

  9. Krishnaraj L, Prasath Kumar VR, Prerna D, Kumar RS, Sudarsan JS, Nithiyanantham S. Design and thermal analysis of the conventional residential building using building information modeling. J Build Rehabil. 2021;6:42.

    Article  Google Scholar 

  10. Kim K-H, Jeon S-E, Kim J-K, Yang S. An experimental study on thermal conductivity of concrete. Cem Concr Res. 2003;33:363–71.

    Article  CAS  Google Scholar 

  11. Liu K, Wang Z, Jin C, Wang F, Lu X. An experimental study on thermal conductivity of iron ore sand cement mortar. Constr Build Mater. 2015;101:932–41.

    Article  Google Scholar 

  12. Shi J, Liu B, Chu SH, Zhang Y, Zhang Z, Han K. Recycling air-cooled blast furnace slag in fiber reinforced alkali-activated mortar. Powder Technol. 2022;407:117686.

    Article  CAS  Google Scholar 

  13. Yavuz Bayraktar O, Kaplan G, Gencel O, Benli A, Sutcu M. Physico-mechanical, durability and thermal properties of basalt fiber reinforced foamed concrete containing waste marble powder and slag. Constr Build Mater. 2021;288:123128.

    Article  CAS  Google Scholar 

  14. Hao LC, Yu WD. Evaluation of thermal protective performance of basalt fiber nonwoven fabrics. J Therm Anal Calorim. 2010;100:551–5.

    Article  CAS  Google Scholar 

  15. Sobia AQ, Hamidah MS, Azmi I, Rafeeqi SFA. Elevated temperature resistance of ultra-high-performance fibre-reinforced cementitious composites. Mag Concr Res. 2015;67:923–37.

    Article  Google Scholar 

  16. Gubran SMM, Saleh AS, Hilda N, Hazaa AB. Steel and basalt fiber comparison in the flexural strength of conventional concrete. Meждyнapoдный жypнaл гyмaнитapныx и ecтecтвeнныx нayк; 2021 cited 2022 Dec 1; Available from: https://cyberleninka.ru/article/n/steel-and-basalt-fiber-comparison-in-the-flexural-strength-of-conventional-concrete.

  17. Alein JS, Bhuvaneshwari M. Textile reinforced concrete sandwich panels: a review. SJ Internet. 2022 cited 2022 Sep 26;119. Available from: https://www.concrete.org/publications/internationalconcreteabstractsportal.aspx?m=details&id=51734899.

  18. IS 12269. Specification for 53 grade ordinary Portland cement (BI-LINGUAL). 2013;26.

  19. IS 383. Specification for Coarse and fine aggregates from natural sources for concrete. 2016; 24.

  20. Wang S, Kang A, Xiao P, Li B, Fu W. Investigating the effects of chopped basalt fiber on the performance of porous asphalt mixture. Adv Mater Sci Eng. 2019;2019:1–12.

    CAS  Google Scholar 

  21. Ayub T, Shafiq N, Nuruddin MF. Effect of chopped basalt fibers on the mechanical properties and microstructure of high performance fiber reinforced concrete. Adv Mater Sci Eng. 2014;2014:1–14.

    Article  Google Scholar 

  22. High C, Seliem HM, El-Safty A, Rizkalla SH. Use of basalt fibers for concrete structures. Constr Build Mater. 2015;96:37–46.

    Article  Google Scholar 

  23. IS 9103. Specification for concrete admixtures.1999;22.

  24. Sudhakar AJ, Muthusubramanian B. Development of basalt fiber reinforced fine-grained cementitious composites for textile reinforcements. 2022.

  25. IS 516. Method of tests for strength of concrete.1959;30.

  26. E37 Committee. ASTM E1269−11 : standard test method for determining specific heat capacity by differential scanning calorimetry Internet. ASTM International; Available from: http://www.astm.org/cgi-bin/resolver.cgi?E1269-11.

  27. Jing R, Liu Y, Yan P. Uncovering the effect of fly ash cenospheres on the macroscopic properties and microstructure of ultra high-performance concrete (UHPC). Constr Build Mater. 2021;286:122977.

    Article  CAS  Google Scholar 

  28. Asadi I, Shafigh P, Abu Hassan ZFB, Mahyuddin NB. Thermal conductivity of concrete–a review. J Build Eng. 2018;20:81–93.

    Article  Google Scholar 

  29. ASTM D 5334–00 : Standard test method for determination of thermal conductivity of soil and soft rock by thermal needle probe procedure. ASTM International

  30. C01 Committee. Standard test method for thermogravimetric analysis of hydraulic cement internet. ASTM International; Available from: http://www.astm.org/cgi-bin/resolver.cgi?C1872-18.

  31. Bhatty JI. Hydration versus strength in a portland cement developed from domestic mineral wastes—a comparative study. Thermochim Acta. 1986;106:93–103.

    Article  CAS  Google Scholar 

  32. Pane I, Hansen W. Investigation of blended cement hydration by isothermal calorimetry and thermal analysis. Cem Concr Res. 2005;35:1155–64.

    Article  CAS  Google Scholar 

  33. Monteagudo SM, Moragues A, Gálvez JC, Casati MJ, Reyes E. The degree of hydration assessment of blended cement pastes by differential thermal and thermogravimetric analysis. Morphological evolution of the solid phases. Thermochimica Acta. 2014;592:37–51.

    Article  CAS  Google Scholar 

  34. Damdelen O, Georgopoulos C, Limbachiya MC. Measuring thermal mass of sustainable concrete mixes. In: Computing in civil and building engineering. 2014;8.

  35. Du Q, Cai C, Lv J, Wu J, Pan T, Zhou J. Experimental investigation on the mechanical properties and microstructure of basalt fiber reinforced engineered cementitious composite. Materials. 2020;13:3796.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Sadrmomtazi A, Tahmouresi B, Saradar A. Effects of silica fume on mechanical strength and microstructure of basalt fiber reinforced cementitious composites (BFRCC). Constr Build Mater. 2018;162:321–33.

    Article  CAS  Google Scholar 

  37. Kabay N. Abrasion resistance and fracture energy of concretes with basalt fiber. Constr Build Mater. 2014;50:95–101.

    Article  Google Scholar 

  38. Dias DP, Thaumaturgo C. Fracture toughness of geopolymeric concretes reinforced with basalt fibers. Cement Concr Compos. 2005;27:49–54.

    Article  CAS  Google Scholar 

  39. Feng J, Liu S, Wang Z. Effects of ultrafine fly ash on the properties of high-strength concrete. J Therm Anal Calorim. 2015;121:1213–23.

    Article  CAS  Google Scholar 

  40. Ahmad J, Kontoleon KJ, Majdi A, Naqash MT, Deifalla AF, Ben Kahla N, et al. A comprehensive review on the ground granulated blast furnace slag (GGBS) in concrete production. Sustainability. 2022;14:8783.

    Article  CAS  Google Scholar 

  41. Saranya P, Nagarajan P, Shashikala AP. Eco-friendly GGBS concrete: a state-of-the-art review. IOP Conf Ser Mater Sci Eng. 2018;330:012057.

    Article  Google Scholar 

  42. Chung DDL. Cement reinforced with short carbon fibers: a multifunctional material. Compos B Eng. 2000;31:511–26.

    Article  Google Scholar 

  43. Onésippe C, Passe-Coutrin N, Toro F, Delvasto S, Bilba K, Arsène M-A. Sugar cane bagasse fibres reinforced cement composites: thermal considerations. Compos A Appl Sci Manuf. 2010;41:549–56.

    Article  Google Scholar 

  44. Raheem AA, Oriola KO, Kareem MA, Abdulwahab R. Investigation on thermal properties of rice husk ash-blended palm kernel shell concrete. Environ Chall. 2021;5:100284.

    Article  Google Scholar 

  45. Saleh AN, Attar AA, Ahmed OK, Mustafa SS. Improving the thermal insulation and mechanical properties of concrete using Nano-SiO2. Results Eng. 2021;12:100303.

    Article  CAS  Google Scholar 

  46. Biradar SV, Dileep MS, Vijaya Gowri DT. Studies of concrete mechanical properties with basalt fibers. IOP Conf Ser Mater Sci Eng. 2020;1006:012031.

    Article  CAS  Google Scholar 

  47. Tumadhir B. Thermal and mechanical properties of basalt fibre reinforced concrete. Int J Civ Environ Eng. 2013;7:4.

    Google Scholar 

  48. Zhang T, Zhang Y, Zhu H, Yan Z. Experimental investigation and multi-level modeling of the effective thermal conductivity of hybrid micro-fiber reinforced cementitious composites at elevated temperatures. Compos Struct. 2021;256:112988.

    Article  Google Scholar 

  49. McKenna T, Richardson MG, O’Rourke B. Heat transfer characteristics of GGBS concrete in fire. J Sustain Architec Civil Eng. 2014;8:45–58.

    Google Scholar 

  50. Chen Z, Li J, Yang E-H. Development of ultra-lightweight and high strength engineered cementitious composites. J Compos Sci. 2021;5:113.

    Article  CAS  Google Scholar 

  51. Ruan S, Unluer C. Influence of supplementary cementitious materials on the performance and environmental impacts of reactive magnesia cement concrete. J Clean Prod. 2017;159:62–73.

    Article  CAS  Google Scholar 

  52. Koňáková D, Vejmelková E, Spedlova V, Polozhiy K, Černý R. Cement Composites for high temperature applications. AMR. 2014;982:154–8.

    Article  Google Scholar 

  53. Othuman Mydin MA, Rozlan NA, Sani NMd, Ganesan S. Analysis of micro-morphology, thermal conductivity, thermal diffusivity and specific heat capacity of coconut fibre reinforced foamed concrete. Othuman Mydin MA, Abdul Ghani NA, (eds). MATEC Web of Conferences. 2014;vol. 17: p 01020.

  54. Reddy LSI, Vijayalakshmi MM, Praveenkumar TR. Thermal conductivity and strength properties of nanosilica and GGBS incorporated concrete specimens. Silicon. 2022;14:145–51.

    Article  CAS  Google Scholar 

  55. Poornima N, Katyal D, Revathi T, Sivasakthi M, Jeyalakshmi R. Effect of curing on mechanical strength and microstructure of fly ash blend GGBS geopolymer, Portland cement mortar and its behavior at elevated temperature. Mater Today Proc. 2021;47:863–70.

    Article  CAS  Google Scholar 

  56. Boulaoued I, Amara I, Mhimid A. Experimental determination of thermal conductivity and diffusivity of new building insulating materials. IJHT. 2016;34:325–31.

    Article  Google Scholar 

  57. Vejmelková E, Černý R. Thermal properties of PVA-fiber reinforced cement composites at high temperatures. AMM. 2013;377:45–9.

    Article  Google Scholar 

  58. Zhao J, Shumuye ED, Wang Z. Thermal conductivity and shrinkage properties of slag-based cement concretes. IOP Conf Ser: Earth Environ Sci. 2021;787:012040.

    Article  Google Scholar 

  59. Shafigh P, Hafez MA, Che Muda Z, Beddu S, Zakaria A, Almkahal Z. Influence of different ambient temperatures on the thermal properties of fiber-reinforced structural lightweight aggregate concrete. Buildings. 2022;12:771.

    Article  Google Scholar 

  60. Sellami A, Bouayad D, Benazzouk A, Amziane S, Merzoud M. Study of toughness and thermal properties of bio-composite reinforced with diss fibers for use as an insulating material. Energy Build. 2022;276:112527.

    Article  Google Scholar 

  61. Raut AN, Gomez CP. Performance Evaluation of Newly Developed Sustainable Blocks for Affordable Housing in Malaysia. Park J-W, Ay Lie H, Hardjasaputra H, Thayaalan P, (eds). MATEC Web Conf. 2017;vol 138:p 01015.

  62. Ntimugura F, Vinai R, Harper A, Walker P. Mechanical, thermal, hygroscopic and acoustic properties of bio-aggregates–lime and alkali-activated insulating composite materials: a review of current status and prospects for miscanthus as an innovative resource in the South West of England. Sustain Mater Technol. 2020;26:e00211.

    CAS  Google Scholar 

  63. Zhou Z, Sofi M, Lumantarna E, San Nicolas R, Hadi Kusuma G, Mendis P. Strength development and thermogravimetric investigation of high-volume fly ash binders. Materials. 2019;12:3344.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Liu C-T, Huang J-S. Fire performance of highly flowable reactive powder concrete. Constr Build Mater. 2009;23:2072–9.

    Article  Google Scholar 

  65. Narattha C, Thongsanitgarn P, Chaipanich A. Thermogravimetry analysis, compressive strength and thermal conductivity tests of non-autoclaved aerated Portland cement–fly ash–silica fume concrete. J Therm Anal Calorim. 2015;122:11–20.

    Article  CAS  Google Scholar 

  66. Palou M, Boháč M, Kuzielová E, Novotný R, Žemlička M, Dragomirová J. Use of calorimetry and thermal analysis to assess the heat of supplementary cementitious materials during the hydration of composite cementitious binders. J Therm Anal Calorim. 2020;142:97–117.

    Article  CAS  Google Scholar 

  67. Janotka I, Mojumdar SC. Thermal analysis at the evaluation of concrete damage by high temperatures. J Therm Anal Calorim. 2005;81:197–203.

    Article  CAS  Google Scholar 

  68. Yun TS, Jeong YJ, Youm K-S. Effect of surrogate aggregates on the thermal conductivity of concrete at ambient and elevated temperatures. Scientific World J. 2014;2014:1–9.

    Article  Google Scholar 

  69. Alharbi YR, Abadel AA, Elsayed N, Mayhoub O, Kohail M. Mechanical properties of EAFS concrete after subjected to elevated temperature. Ain Shams Eng J. 2021;12:1305–11.

    Article  Google Scholar 

  70. Rashad AM, Sadek DM. An investigation on Portland cement replaced by high-volume GGBS pastes modified with micro-sized metakaolin subjected to elevated temperatures. Int J Sustain Built Environ. 2017;6:91–101.

    Article  Google Scholar 

  71. Feng Y, Zhang Q, Chen Q, Wang D, Guo H, Liu L, et al. Hydration and strength development in blended cement with ultrafine granulated copper slag. PLoS One. 2019;14:e0215677.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Antiohos S, Maganari K, Tsimas S. Evaluation of blends of high and low calcium fly ashes for use as supplementary cementing materials. Cement Concr Compos. 2005;27:349–56.

    Article  CAS  Google Scholar 

  73. Jain S, Pradhan B. Effect of cement type on hydration, microstructure and thermo-gravimetric behaviour of chloride admixed self-compacting concrete. Constr Build Mater. 2019;212:304–16.

    Article  CAS  Google Scholar 

  74. Deboucha W, Leklou N, Khelidj A, Oudjit MN. Hydration development of mineral additives blended cement using thermogravimetric analysis (TGA): methodology of calculating the degree of hydration. Constr Build Mater. 2017;146:687–701.

    Article  CAS  Google Scholar 

  75. Steger L, Blotevogel S, Frouin L, Patapy C, Cyr M. Experimental evidence for the acceleration of slag hydration in blended cements by the addition of CaCl2. Cem Concr Res. 2021;149:106558.

    Article  CAS  Google Scholar 

  76. Dung NT, Unluer C. Carbonated MgO concrete with improved performance: the influence of temperature and hydration agent on hydration, carbonation and strength gain. Cement Concr Compos. 2017;82:152–64.

    Article  CAS  Google Scholar 

  77. Cao Y, Zavaterri P, Youngblood J, Moon R, Weiss J. The influence of cellulose nanocrystal additions on the performance of cement paste. Cement Concr Compos. 2015;56:73–83.

    Article  CAS  Google Scholar 

  78. Burduhos Nergis DD, Abdullah MMAB, Sandu AV, Vizureanu P. XRD and TG-DTA study of new alkali activated materials based on fly ash with sand and glass powder. Materials. 2020;13:343.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Rudnik E, Drzymała T. Thermal behavior of polypropylene fiber-reinforced concrete at elevated temperatures. J Thermal Anal Calorimetry. 2018;131:1005–15.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to express their gratitude for the Analytical services rendered by the Department of Physics and Nanotechnology of SRM Institute of Science and Technology, Kattankulathur and Heat and Mass Transfer Laboratory of SRM Institute of Science and Technology, Kattankulathur.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

Alein J S participated in conceptualizing, investigations, methodology, formal analysis, and original draft, writing a review and editing; M. Bhuvaneshwari contributed to conceptualization, writing a review and editing, investigation, and supervision.

Corresponding author

Correspondence to Bhuvaneshwari Muthusubramanian.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sudhakar, A.J., Muthusubramanian, B. Thermal Characteristics of fine grained concrete with various percentages of basalt fiber and GGBS. J Therm Anal Calorim 148, 5217–5233 (2023). https://doi.org/10.1007/s10973-023-12011-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-023-12011-9

Keywords

Navigation