Skip to main content
Log in

New insights into the contribution of quartz powder byproduct from manufactured sand to the performance of cementitious materials

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Quartzite stone powder (QP) is a mining and constructional byproduct that causes severe environmental problems. In this study, to realize its resourceful utilization, cement was partially substituted with four types of QP characterized with different fineness in preparation of an environment-friendly cementitious material. Mechanical properties, hydration heat releasing, hydration products, and porosity of blended materials were presented. The mechanism of the hydration process and microstructure evolution was discussed. The results show that the fineness of QP has a strong impact on the strength development as well as the hydration reaction. The addition of fine QP (600 and 800 m2 kg−1) accelerates the hydration of cement by providing more nucleation sites for hydration products, and refines the pore structure via filling effect. Moreover, the incorporation of QP in binders could reduce cement usage and bring sustainability and economic benefits in reducing the energy consumption, carbon emission and cost of cementitious materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Kirthika SK, Singh SK, Chourasia A. Alternative fine aggregates in production of sustainable concrete- A review. J Clean Prod. 2020;268: 122089.

    Article  Google Scholar 

  2. Li H, Huang F, Cheng G, Xie Y, Tan Y, Li L, et al. Effect of granite dust on mechanical and some durability properties of manufactured sand concrete. Constr Build Mater. 2016;109:41–6.

    Article  CAS  Google Scholar 

  3. Rana A, Kalla P, Verma HK, Mohnot JK. Recycling of dimensional stone waste in concrete: A review. J Clean Prod. 2016;135:312–31.

    Article  Google Scholar 

  4. Gupta T, Kothari S, Siddique S, Sharma RK, Chaudhary S. Influence of stone processing dust on mechanical, durability and sustainability of concrete. Constr Build Mater. 2019;223:918–27.

    Article  Google Scholar 

  5. Li P, Zhang T, An X, Zhang J. An enhanced mix design method of self-compacting concrete with fly ash content based on paste rheological threshold theory and material packing characteristics. Constr Build Mater. 2020;234: 117380.

    Article  Google Scholar 

  6. Zhang J, An X, Yu Y, Nie D. Effects of coarse aggregate content on the paste rheological thresholds of fresh self-compacting concrete. Constr Build Mater. 2019;208:564–76.

    Article  Google Scholar 

  7. Kumar S, Gupta RC, Shrivastava S. Effective utilisation of quartz sandstone mining wastes: A technical note on its thermal resistance. J Clean Prod. 2017;140:1129–35.

    Article  CAS  Google Scholar 

  8. Ouyang X, Wang L, Fu J, Xu S, Ma Y. Surface properties of clay brick powder and its influence on hydration and strength development of cement paste. Constr Build Mater. 2021;300: 123958.

    Article  CAS  Google Scholar 

  9. Sadowski Ł, Piechówka-Mielnik M, Widziszowski T, Gardynik A, Mackiewicz S. Hybrid ultrasonic-neural prediction of the compressive strength of environmentally friendly concrete screeds with high volume of waste quartz mineral dust. J Clean Prod. 2019;212:727–40.

    Article  Google Scholar 

  10. Ouyang X, Yu L, Wang L, Xu S, Ma Y, Fu J. Surface properties of ceramic waste powder and its effect on the rheology, hydration and strength development of cement paste. J Build Eng. 2022;61: 105253.

    Article  Google Scholar 

  11. Kang S-H, Jeong Y, Tan KH, Moon J. The use of limestone to replace physical filler of quartz powder in UHPFRC. Cem Concr Compos. 2018;94:238–47.

    Article  CAS  Google Scholar 

  12. Yılmaz B, Olgun A. Studies on cement and mortar containing low-calcium fly ash, limestone, and dolomitic limestone. Cem Concr Compos. 2008;30:194–201.

    Article  Google Scholar 

  13. Ding X, Li C, Xu Y, Li F, Zhao S. Experimental study on long-term compressive strength of concrete with manufactured sand. Constr Build Mater. 2016;108:67–73.

    Article  Google Scholar 

  14. Mehta PK. Pozzolanic and cementitious byproducts as mineral admixtures for concrete - a critical review. Spec Publ. 1983;79:1–46.

    CAS  Google Scholar 

  15. Dhandapani Y, Manu S, Kaladharan G, Ramanathan S. Towards ternary binders involving limestone additions—A review. Cem Concr Res. 2021;143: 106396.

    Article  CAS  Google Scholar 

  16. Rashad AM, Ouda AS. Effect of tidal zone and seawater attack on high-volume fly ash pastes enhanced with metakaolin and quartz powder in the marine environment. Microporous Mesoporous Mater. 2021;324: 111261.

    Article  CAS  Google Scholar 

  17. Nakayenga J, Cikmit AA, Tsuchida T, Hata T. Influence of stone powder content and particle size on the strength of cement-treated clay. Constr Build Mater. 2021;305: 124710.

    Article  CAS  Google Scholar 

  18. Li B, Wang J, Zhou M. Effect of limestone fines content in manufactured sand on durability of low- and high-strength concretes. Constr Build Mater. 2009;23:2846–50.

    Article  Google Scholar 

  19. Briki Y, Zajac M, Haha MB, Scrivener K. Impact of limestone fineness on cement hydration at early age. Cem Concr Res. 2021;147: 106515.

    Article  CAS  Google Scholar 

  20. Wu K, Long J, Han H, Linglin Xu, Shi H, De Schutter G. Role of ITZ in the degradation process of blended cement concrete under magnesium sulfate attack. J Mater Civ Eng Am Soc Civ Eng. 2020;32:04020235.

    Article  CAS  Google Scholar 

  21. Wu K, Shi H, Xu L, Ye G, De Schutter G. Microstructural characterization of ITZ in blended cement concretes and its relation to transport properties. Cem Concr Res. 2016;79:243–56.

    Article  CAS  Google Scholar 

  22. de Matos PR, Sakata RD, Gleize PJP, de Brito J, Repette WL. Eco-friendly ultra-high performance cement pastes produced with quarry wastes as alternative fillers. J Clean Prod. 2020;269: 122308.

    Article  Google Scholar 

  23. Vardhan K, Goyal S, Siddique R, Singh M. Mechanical properties and microstructural analysis of cement mortar incorporating marble powder as partial replacement of cement. Constr Build Mater. 2015;96:615–21.

    Article  Google Scholar 

  24. Li H, Wang Z, Sun R, Huang F, Yi Z, Yuan Z, et al. Effect of different lithological stone powders on properties of cementitious materials. J Clean Prod. 2021;289: 125820.

    Article  Google Scholar 

  25. Ouyang X, Koleva DA, Ye G, van Breugel K. Insights into the mechanisms of nucleation and growth of C-S–H on fillers. Mater Struct. 2017;50:1–13.

    Article  Google Scholar 

  26. Ouyang X, Koleva DA, Guang Y, van Breugel K. Understanding the adhesion mechanisms between CSH and fillers. Cem Concr Res. 2017;100:275–83.

    Article  CAS  Google Scholar 

  27. Scrivener KL, Füllmann T, Gallucci E, Walenta G, Bermejo E. Quantitative study of Portland cement hydration by X-ray diffraction/Rietveld analysis and independent methods. Cem Concr Res. 2004;34:1541–7.

    Article  CAS  Google Scholar 

  28. Chen J, Zhou W, Niu W, Zhang C, Li F. Explanation about revision of sand for construction (GB/T 14684–2011). Archit Technol. 2012;43:591–4.

    Google Scholar 

  29. Noor MA, Uomoto T. Three-dimensional discrete element simulation of rheology tests of self-compacting concrete. Self-Compact Concr Stockh. 1999;13–14(1999):35–46.

    Google Scholar 

  30. Felekoğlu B, Türkel S, Baradan B. Effect of water/cement ratio on the fresh and hardened properties of self-compacting concrete. Build Environ. 2007;42:1795–802.

    Article  Google Scholar 

  31. GB/T 17671–2021. Test method of cement mortar strength (ISO method) [Internet]. Beijing: China Standard Press; 2021.

  32. Zhang J, Scherer GW. Comparison of methods for arresting hydration of cement. Cem Concr Res. 2011;41:1024–36.

    Article  CAS  Google Scholar 

  33. Lu X, Ye Z, Zhang L, Hou P, Cheng X. The influence of ethanol-diisopropanolamine on the hydration and mechanical properties of Portland cement. Constr Build Mater. 2017;135:484–9.

    Article  CAS  Google Scholar 

  34. Wu K, Shi H, Schutter GD, Guo X, Ye G. Preparation of alinite cement from municipal solid waste incineration fly ash. Cem Concr Compos. 2012;34:322–7.

    Article  CAS  Google Scholar 

  35. Xu L, Wu K, Rößler C, Wang P, Ludwig HM. Influence of curing temperatures on the hydration of calcium aluminate cement/Portland cement/calcium sulfate blends. Cem Concr Compos. 2017;80:298–306.

    Article  Google Scholar 

  36. Yu L, Wang Q, Wu K, Tan Z, Pan F, Yang Z, et al. Identification of multi-scale homogeneity of blended cement concrete: macro performance, micro and meso structure. J Therm Anal Calorim. 2022;147:10293–304.

    Article  CAS  Google Scholar 

  37. Zhang Y, Wu K, Yang Z, Ye G. A reappraisal of the ink-bottle effect and pore structure of cementitious materials using intrusion-extrusion cyclic mercury porosimetry. Cem Concr Res. 2022;161: 106942.

    Article  CAS  Google Scholar 

  38. Gao Y, Wu K, Yuan Q. Limited fractal behavior in cement paste upon mercury intrusion porosimetry test: analysis and models. Constr Build Mater. 2021;276: 122231.

    Article  CAS  Google Scholar 

  39. Wu K, Long J, Xu L, De Schutter G. A study on the chloride diffusion behavior of blended cement concrete in relation to aggregate and ITZ. Constr Build Mater. 2019;223:1063–73.

    Article  CAS  Google Scholar 

  40. Zhou J, Ye G, van Breugel K. Characterization of pore structure in cement-based materials using pressurization–depressurization cycling mercury intrusion porosimetry (PDC-MIP). Cem Concr Res. 2010;40:1120–8.

    Article  CAS  Google Scholar 

  41. Huang T, Li B, Yuan Q, Shi Z, Xie Y, Shi C. Rheological behavior of Portland clinker-calcium sulphoaluminate clinker-anhydrite ternary blend. Cem Concr Compos. 2019;104: 103403.

    Article  CAS  Google Scholar 

  42. Wang C, Chen S, Huang D, Chen Q, Tu M, Wu K, et al. Pozzolanic activity and environmental risk assessment of water-based drilling cuttings of shale gas. Constr Build Mater. 2022;348: 128657.

    Article  CAS  Google Scholar 

  43. Galetakis M, Soultana A. A review on the utilisation of quarry and ornamental stone industry fine by-products in the construction sector. Constr Build Mater. 2016;102:769–81.

    Article  Google Scholar 

  44. Rakhimova NR, Rakhimov RZ, Naumkina NI, Khuzin AF, Osin YN. Influence of limestone content, fineness, and composition on the properties and microstructure of alkali-activated slag cement. Cem Concr Compos. 2016;72:268–74.

    Article  CAS  Google Scholar 

  45. Zhu Z, Wang Z, Xu L, Zhou Y, Chen Y, Wu K, et al. Synthesis and characterization of an intermediate for C-S–H structure tailoring. Cem Concr Res. 2022;160: 106923.

    Article  CAS  Google Scholar 

  46. Zhu Z, Wang Z, Zhou Y, Chen Y, Li P, Shan Q, et al. Synthesis and characterization of pregelatinized starch modified C-S–H: Inspired by the historic binders. Constr Build Mater. 2022;354: 129114.

    Article  CAS  Google Scholar 

  47. Xu L, Wu K, Li N, Zhou X, Wang P. Utilization of flue gas desulfurization gypsum for producing calcium sulfoaluminate cement. J Clean Prod. 2017;161:803–11.

    Article  CAS  Google Scholar 

  48. Xu L, Tang C, Li H, Wu K, Zhang Y, Yang Z. Hydration characteristics assessment of a binary calcium sulfoaluminate-anhydrite cement related with environment temperature. J Therm Anal Calorim. 2022;147:3053–61.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Scherer GW, Zhang J, Thomas JJ. Nucleation and growth models for hydration of cement. Cem Concr Res. 2012;42:982–93.

    Article  CAS  Google Scholar 

  50. Moon GD, Oh S, Jung SH, Choi YC. Effects of the fineness of limestone powder and cement on the hydration and strength development of PLC concrete. Constr Build Mater. 2017;135:129–36.

    Article  CAS  Google Scholar 

  51. Galan I, Müller B, Briendl LG, Mittermayr F, Mayr T, Dietzel M, et al. Continuous optical in-situ pH monitoring during early hydration of cementitious materials. Cem Concr Res. 2021;150: 106584.

    Article  CAS  Google Scholar 

  52. Wu K, Han H, Li H, Dong B, Liu T, De Schutter G. Experimental study on concurrent factors influencing the ITZ effect on mass transport in concrete. Cem Concr Compos. 2021;123: 104215.

    Article  CAS  Google Scholar 

  53. Wang S, Yu L, Yang F, Xu L, Wu K, De Schutter G, et al. Effect of steel fiber distribution on the mechanical properties of UHPC caused by vehicle-bridge coupling vibration. Compos Part B Eng. 2022;245: 110201.

    Article  CAS  Google Scholar 

  54. Wang Q, Long J, Xu L, Zhang Z, Lv Y, Yang Z, et al. Experimental and modelling study on the deterioration of stabilized soft soil subjected to sulfate attack. Constr Build Mater. 2022;346: 128436.

    Article  CAS  Google Scholar 

  55. Shah HA, Yuan Q, Zuo S. Air entrainment in fresh concrete and its effects on hardened concrete-a review. Constr Build Mater. 2021;274: 121835.

    Article  CAS  Google Scholar 

  56. Martinelli E, Koenders EAB, Caggiano A. A numerical recipe for modelling hydration and heat flow in hardening concrete. Cem Concr Compos. 2013;40:48–58.

    Article  CAS  Google Scholar 

  57. Lawrence P, Cyr M, Ringot E. Mineral admixtures in mortars: effect of inert materials on short-term hydration. Cem Concr Res. 2003;33:1939–47.

    Article  CAS  Google Scholar 

  58. Zhu Z, Wang Z, Zhou Y, Chen Y, Wu K. Nanoscale determination of calcium silicate hydrate (C–S–H) precursors crystallized at extreme early stage. Measurement. 2022;199: 111489.

    Article  Google Scholar 

  59. Wu K, Han H, Rößler C, Xu L, Ludwig HM. Rice hush ash as supplementary cementitious material for calcium aluminate cement – Effects on strength and hydration. Constr Build Mater. 2021;302: 124198.

    Article  CAS  Google Scholar 

  60. Wu K, Shi H, Guo X. Utilization of municipal solid waste incineration fly ash for sulfoaluminate cement clinker production. Waste Manag. 2011;31:2001–8.

    Article  CAS  PubMed  Google Scholar 

  61. Scrivener KL, Nonat A. Hydration of cementitious materials, present and future. Cem Concr Res. 2011;41:651–65.

    Article  CAS  Google Scholar 

  62. Wang Z, Chen Y, Xu L, Zhu Z, Zhou Y, Pan F, et al. Insight into the local C-S–H structure and its evolution mechanism controlled by curing regime and Ca/Si ratio. Constr Build Mater. 2022;333: 127388.

    Article  CAS  Google Scholar 

  63. Zhou Y, Wang Z, Zhu Z, Chen Y, Zhou L, Xu L, et al. Time-varying structure evolution and mechanism analysis of alite particles hydrated in restricted space. Constr Build Mater. 2022;341: 127829.

    Article  CAS  Google Scholar 

  64. Stumm W. Chemistry of the solid-water interface: processes at the mineral-water and particle-water interface in natural systems. New York: John Wiley Sons; 1992.

    Google Scholar 

  65. Zhang H, Li L, Feng P, Wang W, Tian Q, Liu J. Impact of Temperature Rising Inhibitor on hydration kinetics of cement paste and its mechanism. Cem Concr Compos. 2018;93:289–300.

    Article  CAS  Google Scholar 

  66. Zhang H, Liu X, Feng P, Li L, Wang W. Influence of temperature rising inhibitor on nucleation and growth process during cement hydration. Thermochim Acta. 2019;681: 178403.

    Article  CAS  Google Scholar 

  67. Zhang Z, Liu Y, Huang L, Yan P. A new hydration kinetics model of composite cementitious materials, part 1: Hydration kinetic model of Portland cement. J Am Ceram Soc. 2020;103:1970–91.

    Article  CAS  Google Scholar 

  68. Zhang Z, Chen W, Han F, Yan P. A new hydration kinetics model of composite cementitious materials, Part 2: Physical effect of SCMs. J Am Ceram Soc. 2020;103:3880–95.

    Article  CAS  Google Scholar 

  69. Garrault S, Finot E, Lesniewska E, Nonat A. Study of C-S–H growth on C3S surface during its early hydration. Mater Struct. 2005;38:435–42.

    Article  CAS  Google Scholar 

  70. Sun H, Zhang X, Zhao P, Liu D. Effects of Nano-Silica Particle Size on Fresh State Properties of Cement Paste. KSCE J Civ Eng. 2021;25:2555–66.

    Article  Google Scholar 

  71. Chen Z, Poon CS. Comparative studies on the effects of sewage sludge ash and fly ash on cement hydration and properties of cement mortars. Constr Build Mater. 2017;154:791–803.

    Article  CAS  Google Scholar 

  72. Hou D, Li D, Hua P, Jiang J, Zhang G. Statistical modelling of compressive strength controlled by porosity and pore size distribution for cementitious materials. Cem Concr Compos. 2019;96:11–20.

    Article  CAS  Google Scholar 

  73. Wang S, Yu L, Yang F, Zhang W, Xu L, Wu K, et al. Co-utilization of quarry tailings and fly ash for non-sintered ultra-lightweight aggregates (ULWAs) by autoclave technology. Constr Build Mater. 2022;346: 128482.

    Article  CAS  Google Scholar 

  74. Zhao Y, Gao J, Liu C, Chen X, Xu Z. The particle-size effect of waste clay brick powder on its pozzolanic activity and properties of blended cement. J Clean Prod. 2020;242: 118521.

    Article  CAS  Google Scholar 

  75. Yu J, Lu C, Leung CKY, Li G. Mechanical properties of green structural concrete with ultrahigh-volume fly ash. Constr Build Mater. 2017;147:510–8.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China (2022YFC3803400), National Natural Science Foundation of China (51978505, 52278270), Key Technologies R&D Program of CNBM (2021HX0506) and Opening Foundation of Research and Development Center of Transport Industry of New Materials, Technologies Application for Highway Construction and Maintenance of Offshore Areas (Fujian Communications planning & design institute Co., LTD). We would like to thank Dr. Long Yu for the XRD analysis and anonymous reviewers whose suggestions have significantly improved the quality of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

JL contributed to methodology, investigation, data curation, writing-original draft, and review and editing. KY contributed to methodology, data curation, and investigation. SW contributed to investigation and methodology. LX performed conceptualization, investigation, writing-original draft, and review and editing. ZY performed conceptualization and supervision. CY performed investigation and data curing. JL contributed to conceptualization and methodology. KW contributed to conceptualization, supervision, investigation, writing-original draft, and review and editing. LZ performed conceptualization and supervision.

Corresponding author

Correspondence to Kai Wu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest..

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Long, J., Yang, K., Wang, S. et al. New insights into the contribution of quartz powder byproduct from manufactured sand to the performance of cementitious materials. J Therm Anal Calorim 148, 4105–4117 (2023). https://doi.org/10.1007/s10973-023-12008-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-023-12008-4

Keywords

Navigation