Skip to main content
Log in

Using soil as photoabsorber for solar steam generation

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Continuous solar steam generation requires a photoabsorber with high capillarity or a hydrophilic surface, the capability of floating on water and low thermal conductivity. Hence, we propose an alternative interfacial solar steam substrate made of soil as a novel cost-effective photoabsorber. For this purpose, three soil types, sand (0.05–2 mm), silt (0.002–0.05 mm) and clay (less than 0.002 mm), were used and floated using a polystyrene foam to reduce heat losses. Our results reveal that a maximum evaporative efficiency of 80.01 ± 3.1% at 1 kW m−2 was achieved for the silt sample, whereas the corresponding value for water alone was 23.22 ± 1.4%. In a desalination test, the quality of obtained water from the process greatly exceeds the World Health Organization’s drinking water standards. The hydrophilic properties of silt prevent the deposition of impurities on its surfaces, ensuring high durability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Guo L, Gong J, Song C, Zhao Y, Tan B, Zhao Q, et al. Donor-acceptor charge migration system of superhydrophilic covalent triazine framework and carbon nanotube toward high performance solar thermal conversion. ACS Energy Lett. 2020;5(4):1300–6. https://doi.org/10.1021/acsenergylett.0c00394.

    Article  CAS  Google Scholar 

  2. Zhao H-Y, Zhou J, Yu Z-L, Chen L-F, Zhan H-J, Zhu H-W, et al. Lotus-inspired evaporator with Janus wettability and bimodal pores for solar steam generation. Cell Rep Phys Sci. 2020;1(6):100074. https://doi.org/10.1016/j.xcrp.2020.100074.

    Article  Google Scholar 

  3. Drinking-water, World health Organization (2019). https://www.who.int/news-room/fact-sheets/detail/drinking-water.

  4. Jin H, Lin G, Zeiny A, Bai L, Wen D. Nanoparticle-based solar vapor generation: an experimental and numerical study. Energy. 2019;178:447–59. https://doi.org/10.1016/j.energy.2019.04.085.

    Article  CAS  Google Scholar 

  5. Jin H, Lin G, Guo Y, Bai L, Wen D. Nanoparticles enabled pump-free direct absorption solar collectors. Renew Energy. 2020;145:2337–44. https://doi.org/10.1016/j.renene.2019.07.108.

    Article  CAS  Google Scholar 

  6. Jin H, Lin G, Bai L, Zeiny A, Wen D. Steam generation in a nanoparticle-based solar receiver. Nano Energy. 2016;28:397–406. https://doi.org/10.1016/j.nanoen.2016.08.011.

    Article  CAS  Google Scholar 

  7. Jin H, Lin G, Zeiny A, Bai L, Cai J, Wen D. Experimental study of transparent oscillating heat pipes filled with solar absorptive nanofluids. Int J Heat Mass Transf. 2019;139:789–801. https://doi.org/10.1016/j.ijheatmasstransfer.2019.04.117.

    Article  CAS  Google Scholar 

  8. Ghafurian MM, Niazmand H, Ebrahimnia-Bajestan E, Elhami NH. Localized solar heating via graphene oxide nanofluid for direct steam generation. J Therm Anal Calorim. 2019;135(2):1443–9. https://doi.org/10.1007/s10973-018-7496-0.

    Article  CAS  Google Scholar 

  9. Ghasemi H, Ni G, Marconnet AM, Loomis J, Yerci S, Miljkovic N, et al. Solar steam generation by heat localization. Nat Commun. 2014;5(1):4449. https://doi.org/10.1038/ncomms5449.

    Article  CAS  PubMed  Google Scholar 

  10. Zhang P, Li J, Lv L, Zhao Y, Qu L. Vertically aligned graphene sheets membrane for highly efficient solar thermal generation of clean water. ACS Nano. 2017;11(5):5087–93. https://doi.org/10.1021/acsnano.7b01965.

    Article  CAS  PubMed  Google Scholar 

  11. Bae K, Kang G, Cho SK, Park W, Kim K, Padilla WJ. Flexible thin-film black gold membranes with ultrabroadband plasmonic nanofocusing for efficient solar vapour generation. Nat Commun. 2015;6(1):10103. https://doi.org/10.1038/ncomms10103.

    Article  CAS  PubMed  Google Scholar 

  12. Hu X, Xu W, Zhou L, Tan Y, Wang Y, Zhu S, et al. Tailoring graphene oxide-based aerogels for efficient solar steam generation under one sun. Adv Mater. 2017;29(5):1604031. https://doi.org/10.1002/adma.201604031.

    Article  CAS  Google Scholar 

  13. Fang J, Liu Q, Zhang W, Gu J, Su Y, Su H, et al. Ag/diatomite for highly efficient solar vapor generation under one-sun irradiation. J Mater Chem A. 2017;5(34):17817–21. https://doi.org/10.1039/C7TA05976K.

    Article  CAS  Google Scholar 

  14. Ghafurian MM, Niazmand H, Ebrahimnia-Bajestan E, Taylor RA. Wood surface treatment techniques for enhanced solar steam generation. Renew Energy. 2020;146:2308–15. https://doi.org/10.1016/j.renene.2019.08.036.

    Article  CAS  Google Scholar 

  15. Jia C, Li Y, Yang Z, Chen G, Yao Y, Jiang F, et al. Rich Mesostructures derived from natural woods for solar steam generation. Joule. 2017;1(3):588–99. https://doi.org/10.1016/j.joule.2017.09.011.

    Article  Google Scholar 

  16. Ghafurian MM, Dastjerd F, Afsharian A, Esfahani FR, Niazmand H, Behzadnia H, et al. Low-cost zinc-oxide nanoparticles for solar-powered steam production: Superficial and volumetric approaches. J Clean Prod. 2021;280:124261. https://doi.org/10.1016/j.jclepro.2020.124261.

    Article  CAS  Google Scholar 

  17. Ghafurian MM, Niazmand H, Goharshadi EK, Zahmatkesh BB, Moallemi AE, Mehrkhah R, et al. Enhanced solar desalination by delignified wood coated with bimetallic Fe/Pd nanoparticles. Desalination. 2020;493:114657. https://doi.org/10.1016/j.desal.2020.114657.

    Article  CAS  Google Scholar 

  18. Song L, Zhang X-F, Wang Z, Zheng T, Yao J. Fe3O4/polyvinyl alcohol decorated delignified wood evaporator for continuous solar steam generation. Desalination. 2021;507:115024. https://doi.org/10.1016/j.desal.2021.115024.

    Article  CAS  Google Scholar 

  19. Xu N, Hu X, Xu W, Li X, Zhou L, Zhu S, et al. Mushrooms as efficient solar steam-generation devices. Adv Mater. 2017;29(28):1606762. https://doi.org/10.1002/adma.201606762.

    Article  CAS  Google Scholar 

  20. Fang Q, Li T, Chen Z, Lin H, Wang P, Liu F. Full biomass-derived solar stills for robust and stable evaporation to collect clean water from various water-bearing media. ACS Appl Mater Interfaces. 2019;11(11):10672–9. https://doi.org/10.1021/acsami.9b00291.

    Article  CAS  PubMed  Google Scholar 

  21. Fang J, Liu J, Gu J, Liu Q, Zhang W, Su H, et al. Hierarchical porous carbonized lotus seedpods for highly efficient solar steam generation. Chem Mater. 2018;30(18):6217–21. https://doi.org/10.1021/acs.chemmater.8b01702.

    Article  CAS  Google Scholar 

  22. Li J, Zhou X, Zhang J, Liu C, Wang F, Zhao Y, et al. Migration crystallization device based on biomass photothermal materials for efficient salt-rejection solar steam generation. ACS Appl Energy Mater. 2020;3(3):3024–32. https://doi.org/10.1021/acsaem.0c00126.

    Article  CAS  Google Scholar 

  23. Liu S, Huang C, Luo X, Guo C. Performance optimization of bi-layer solar steam generation system through tuning porosity of bottom layer. Appl Energy. 2019;239:504–13. https://doi.org/10.1016/j.apenergy.2019.01.254.

    Article  Google Scholar 

  24. Li X, Xu W, Tang M, Zhou L, Zhu B, Zhu S, et al. Graphene oxide-based efficient and scalable solar desalination under one sun with a confined 2D water path. Proc Natl Acad Sci. 2016;113(49):13953. https://doi.org/10.1073/pnas.1613031113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Shi L, Wang Y, Zhang L, Wang P. Rational design of a bi-layered reduced graphene oxide film on polystyrene foam for solar-driven interfacial water evaporation. J Mater Chem A. 2017;5(31):16212–9. https://doi.org/10.1039/C6TA09810J.

    Article  CAS  Google Scholar 

  26. Sheng C, Yang N, Yan Y, Shen X, Jin C, Wang Z, et al. Bamboo decorated with plasmonic nanoparticles for efficient solar steam generation. Appl Therm Eng. 2020;167:114712. https://doi.org/10.1016/j.applthermaleng.2019.114712.

    Article  CAS  Google Scholar 

  27. Xu R, Wei N, Li Z, Song X, Li Q, Sun K, et al. Construction of hierarchical 2D/2D Ti3C2/MoS2 nanocomposites for high-efficiency solar steam generation. J Colloid Interface Sci. 2021;584:125–33. https://doi.org/10.1016/j.jcis.2020.09.052.

    Article  CAS  PubMed  Google Scholar 

  28. Wang G, Fu Y, Guo A, Mei T, Wang J, Li J, et al. Reduced graphene oxide-polyurethane nanocomposite foam as a reusable photoreceiver for efficient solar steam generation. Chem Mater. 2017;29(13):5629–35. https://doi.org/10.1021/acs.chemmater.7b01280.

    Article  CAS  Google Scholar 

  29. Chen Y, Shi Y, Kou H, Liu D, Huang Y, Chen Z, et al. Self-floating carbonized tissue membrane derived from commercial facial tissue for highly efficient solar steam generation. ACS Sustain Chem Eng. 2019;7(3):2911–5. https://doi.org/10.1021/acssuschemeng.8b05830.

    Article  CAS  Google Scholar 

  30. Zhu M, Yu J, Ma C, Zhang C, Wu D, Zhu H. Carbonized daikon for high efficient solar steam generation. Sol Energy Mater Sol Cells. 2019;191:83–90. https://doi.org/10.1016/j.solmat.2018.11.015.

    Article  CAS  Google Scholar 

  31. Wang X, Sha C, Wang W, Chen Y, Yu Y, Fan D. Functionalized biomass-derived composites for solar vapor generation. Mater Res Express. 2019;6(12):125613. https://doi.org/10.1088/2053-1591/ab586e.

    Article  CAS  Google Scholar 

  32. Wilson HM, Ahirrao DJ, Raheman Ar S, Jha N. Biomass-derived porous carbon for excellent low intensity solar steam generation and seawater desalination. Solar Energy Mater Solar Cells. 2020;215:110604. https://doi.org/10.1016/j.solmat.2020.110604.

    Article  CAS  Google Scholar 

  33. Sun Z, Li W, Song W, Zhang L, Wang Z. A high-efficiency solar desalination evaporator composite of corn stalk, Mcnts and TiO2: ultra-fast capillary water moisture transportation and porous bio-tissue multi-layer filtration. J Mater Chem A. 2020;8(1):349–57. https://doi.org/10.1039/C9TA10898J.

    Article  CAS  Google Scholar 

  34. Kim K, Kang J, Kim S-I, Kim S, Ryu S-T, Jang J-H. Recycling of particulate photoabsorbers for highly stable solar desalination operation. ACS Appl Energy Mater. 2020;3(9):8295–301. https://doi.org/10.1021/acsaem.0c00824.

    Article  CAS  Google Scholar 

  35. Zhang S, Zang L, Dou T, Zou J, Zhang Y, Sun L. Willow Catkins-derived porous carbon membrane with hydrophilic property for efficient solar steam generation. ACS Omega. 2020;5(6):2878–85. https://doi.org/10.1021/acsomega.9b03718.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Chen T, Xie H, Qiao X, Hao S, Wu Z, Sun D, et al. Highly anisotropic corncob as an efficient solar steam-generation device with heat localization and rapid water transportation. ACS Appl Mater Interfaces. 2020;12(45):50397–405. https://doi.org/10.1021/acsami.0c13845.

    Article  CAS  PubMed  Google Scholar 

  37. Wang K, Cheng Z, Li P, Zheng Y, Liu Z, Cui L, et al. Three-dimensional self-floating foam composite impregnated with porous carbon and polyaniline for solar steam generation. J Colloid Interface Sci. 2021;581:504–13. https://doi.org/10.1016/j.jcis.2020.07.136.

    Article  CAS  PubMed  Google Scholar 

  38. Wu X, Cao S, Ghim D, Jiang Q, Singamaneni S, Jun Y-S. A thermally engineered polydopamine and bacterial nanocellulose bilayer membrane for photothermal membrane distillation with bactericidal capability. Nano Energy. 2021;79:105353. https://doi.org/10.1016/j.nanoen.2020.105353.

    Article  CAS  Google Scholar 

  39. Zhang C, Yuan B, Liang Y, Yang L, Bai L, Yang H, et al. Carbon nanofibers enhanced solar steam generation device based on loofah biomass for water purification. Mater Chem Phys. 2021;258:123998. https://doi.org/10.1016/j.matchemphys.2020.123998.

    Article  CAS  Google Scholar 

  40. Huang L, Ling L, Su J, Song Y, Wang Z, Tang BZ, et al. Laser-engineered graphene on wood enables efficient antibacterial, anti-salt-fouling, and lipophilic-matter-rejection solar evaporation. ACS Appl Mater Interfaces. 2020;12(46):51864–72. https://doi.org/10.1021/acsami.0c16596.

    Article  CAS  PubMed  Google Scholar 

  41. Aziznezhad M, Goharshadi E, Namayandeh-Jorabchi M. Surfactant-mediated prepared VO2 (M) nanoparticles for efficient solar steam generation. Solar Energy Mater Solar Cells. 2020;211:110515. https://doi.org/10.1016/j.solmat.2020.110515.

    Article  CAS  Google Scholar 

  42. Zhang X, Yang L, Dang B, Tao J, Li S, Zhao S, et al. Nature-inspired design: p-toluenesulfonic acid-assisted hydrothermally engineered wood for solar steam generation. Nano Energy. 2020;78:105322. https://doi.org/10.1016/j.nanoen.2020.105322.

    Article  CAS  Google Scholar 

  43. Ma N, Fu Q, Hong Y, Hao X, Wang X, Ju J, et al. Processing natural wood into an efficient and durable solar steam generation device. ACS Appl Mater Interfaces. 2020;12(15):18165–73. https://doi.org/10.1021/acsami.0c02481.

    Article  CAS  PubMed  Google Scholar 

  44. Tian C, Liu J, Ruan R, Tian X, Lai X, Xing L, et al. Sandwich photothermal membrane with confined hierarchical carbon cells enabling high-efficiency solar steam generation. Small. 2020;16(23):2000573. https://doi.org/10.1002/smll.202000573.

    Article  CAS  Google Scholar 

  45. Chen T, Wu Z, Liu Z, Aladejana JT, Wang X, Niu M, et al. Hierarchical porous aluminophosphate-treated wood for high-efficiency solar steam generation. ACS Appl Mater Interfaces. 2020;12(17):19511–8. https://doi.org/10.1021/acsami.0c01815.

    Article  CAS  PubMed  Google Scholar 

  46. Li Z, Zheng M, Wei N, Lin Y, Chu W, Xu R, et al. Broadband-absorbing WO3-x nanorod-decorated wood evaporator for highly efficient solar-driven interfacial steam generation. Solar Energy Mater Solar Cells. 2020;205:110254. https://doi.org/10.1016/j.solmat.2019.110254.

    Article  CAS  Google Scholar 

  47. Jang H, Choi J, Lee H, Jeon S. Corrugated wood fabricated using laser-induced graphitization for salt-resistant solar steam generation. ACS Appl Mater Interfaces. 2020;12(27):30320–7. https://doi.org/10.1021/acsami.0c05138.

    Article  CAS  PubMed  Google Scholar 

  48. Kuang Y, Chen C, He S, Hitz EM, Wang Y, Gan W, et al. A high-performance self-regenerating solar evaporator for continuous water desalination. Adv Mater. 2019;31(23):1900498. https://doi.org/10.1002/adma.201900498.

    Article  CAS  Google Scholar 

  49. Huang W, Hu G, Tian C, Wang X, Tu J, Cao Y, et al. Nature-inspired salt resistant polypyrrole–wood for highly efficient solar steam generation. Sustain Energy Fuels. 2019;3(11):3000–8. https://doi.org/10.1039/C9SE00163H.

    Article  CAS  Google Scholar 

  50. Luo X, Huang C, Liu S, Zhong J. High performance of carbon-particle/bulk-wood bi-layer system for solar steam generation. Int J Energy Res. 2018;42(15):4830–9. https://doi.org/10.1002/er.4239.

    Article  Google Scholar 

  51. Chen C, Li Y, Song J, Yang Z, Kuang Y, Hitz E, et al. Highly flexible and efficient solar steam generation device. Adv Mater. 2017;29(30):1701756. https://doi.org/10.1002/adma.201701756.

    Article  CAS  Google Scholar 

  52. Yang H-C, Chen Z, Xie Y, Wang J, Elam JW, Li W, et al. Solar steam: Chinese ink: a powerful photothermal material for solar steam generation. Adv Mater Interfaces. 2019;6(1):1970002. https://doi.org/10.1002/admi.201970002.

    Article  Google Scholar 

  53. Wang Z, Yan Y, Shen X, Sun Q, Jin C. Candle soot nanoparticle-decorated wood for efficient solar vapor generation. Sustain Energy Fuels. 2020;4(1):354–61. https://doi.org/10.1039/C9SE00617F.

    Article  CAS  Google Scholar 

  54. Chen Z, Dang B, Luo X, Li W, Li J, Yu H, et al. Deep eutectic solvent-assisted in situ wood delignification: a promising strategy to enhance the efficiency of wood-based solar steam generation devices. ACS Appl Mater Interfaces. 2019;11(29):26032–7. https://doi.org/10.1021/acsami.9b08244.

    Article  CAS  PubMed  Google Scholar 

  55. Kim K, Yu S, An C, Kim S-W, Jang J-H. Mesoporous three-dimensional graphene networks for highly efficient solar desalination under 1 sun Illumination. ACS Appl Mater Interfaces. 2018;10(18):15602–8. https://doi.org/10.1021/acsami.7b19584.

    Article  CAS  PubMed  Google Scholar 

  56. Liu H, Chen C, Chen G, Kuang Y, Zhao X, Song J, et al. High-performance solar steam device with layered channels: artificial tree with a reversed design. Adv Energy Mater. 2018;8(8):1701616. https://doi.org/10.1002/aenm.201701616.

    Article  CAS  Google Scholar 

  57. Li T, Liu H, Zhao X, Chen G, Dai J, Pastel G, et al. Scalable and highly efficient mesoporous wood-based solar steam generation device: localized heat, rapid water transport. Adv Func Mater. 2018;28(16):1707134. https://doi.org/10.1002/adfm.201707134.

    Article  CAS  Google Scholar 

  58. Wu X, Chen GY, Zhang W, Liu X, Xu H. A plant-transpiration-process-inspired strategy for highly efficient solar evaporation. Adv Sustain Syst. 2017;1(6):1700046. https://doi.org/10.1002/adsu.201700046.

    Article  CAS  Google Scholar 

  59. Matus FJ. Fine silt and clay content is the main factor defining maximal C and N accumulations in soils: a meta-analysis. Sci Rep. 2021;11(1):6438. https://doi.org/10.1038/s41598-021-84821-6.

    Article  CAS  PubMed Central  Google Scholar 

  60. Papanicolaou AN, Elhakeem M, Wilson CG, Lee Burras C, West LT, Lin H, et al. Spatial variability of saturated hydraulic conductivity at the hillslope scale: understanding the role of land management and erosional effect. Geoderma. 2015;243–244:58–68. https://doi.org/10.1016/j.geoderma.2014.12.010.

    Article  Google Scholar 

  61. Ciani A, Goss K-U, Scharzenbach RP. Light penetration in soil and particulateminerals. Eur J Soil Sci. 2005;56:561–74. https://doi.org/10.1111/j.1365-2389.2005.00688.x.

    Article  CAS  Google Scholar 

  62. Li Z, Wang C, Lei T, Ma H, Su J, Ling S, et al. Arched bamboo charcoal as interfacial solar steam generation integrative device with enhanced water purification capacity. Adv Sustain Syst. 2019;3(4):1800144. https://doi.org/10.1002/adsu.201800144.

    Article  CAS  Google Scholar 

  63. Lin Y, Zhou W, Di Y, Zhang X, Yang L, Gan Z. Low-cost carbonized kelp for highly efficient solar steam generation. AIP Adv. 2019;9(5):055110. https://doi.org/10.1063/1.5096295.

    Article  CAS  Google Scholar 

  64. Lu Y, Wang X, Fan D, Yang H, Xu H, Min H, et al. Biomass derived Janus solar evaporator for synergic water evaporation and purification. Sustain Mater Technol. 2020;25:e00180. https://doi.org/10.1016/j.susmat.2020.e00180.

    Article  CAS  Google Scholar 

  65. Gao H, Yang M, Dang B, Luo X, Liu S, Li S, et al. Natural phenolic compound–iron complexes: sustainable solar absorbers for wood-based solar steam generation devices. RSC Adv. 2020;10(2):1152–8. https://doi.org/10.1039/C9RA08235B.

    Article  CAS  Google Scholar 

  66. Wang C-F, Wu C-L, Kuo S-W, Hung W-S, Lee K-J, Tsai H-C, et al. Preparation of efficient photothermal materials from waste coffee grounds for solar evaporation and water purification. Sci Rep. 2020;10(1):12769. https://doi.org/10.1038/s41598-020-69778-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Fang W, Zhao L, He X, Chen H, Li W, Zeng X, et al. Carbonized rice husk foam constructed by surfactant foaming method for solar steam generation. Renew Energy. 2020;151:1067–75. https://doi.org/10.1016/j.renene.2019.11.111.

    Article  CAS  Google Scholar 

  68. Xue G, Liu K, Chen Q, Yang P, Li J, Ding T, et al. Robust and low-cost flame-treated wood for high-performance solar steam generation. ACS Appl Mater Interfaces. 2017;9(17):15052–7. https://doi.org/10.1021/acsami.7b01992.

    Article  CAS  PubMed  Google Scholar 

  69. Liu S, Huang C, Luo X, Rao Z. High-performance solar steam generation of a paper-based carbon particle system. Appl Therm Eng. 2018;142:566–72. https://doi.org/10.1016/j.applthermaleng.2018.07.032.

    Article  CAS  Google Scholar 

  70. Li H, He Y, Hu Y, Wang X. Commercially available activated carbon fiber felt enables efficient solar steam generation. ACS Appl Mater Interfaces. 2018;10(11):9362–8. https://doi.org/10.1021/acsami.7b18071.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the financial supports from the Ferdowsi University of Mashhad, Iran. Mohammad Mustafa Ghafurian was partially supported by a grant from Ferdowsi University of Mashhad (No. FUM-30240).

Author information

Authors and Affiliations

Authors

Contributions

MMG was designed the experimental setup and methods, conducted tests, analysis of materials characteristics and writing; HN was contributed to supervision of the work and writing.

Corresponding author

Correspondence to Mohammad Mustafa Ghafurian.

Ethics declarations

Conflict of interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1240 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghafurian, M.M., Niazmand, H. Using soil as photoabsorber for solar steam generation. J Therm Anal Calorim 148, 8041–8050 (2023). https://doi.org/10.1007/s10973-023-12002-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-023-12002-w

Keywords

Navigation