Skip to main content
Log in

Exploration of water conveying carbon nanotubes, graphene, and copper nanoparticles on impermeable stagnant and moveable walls experiencing variable temperature: thermal analysis

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

A Correction to this article was published on 17 January 2024

This article has been updated

Abstract

Variability in the temperature of a stagnant and moveable wall is unavoidable in the motion of water-based hybrid nanofluid subject to the heat source on impermeable walls in the industry. However, when the fluid substance is heated exponentially from the wall, nothing is known about the motion of water conveying spherical carbon nanotubes, cylindrical graphene, and platelet copper nanoparticles at different volumes of nanoparticles and levels of buoyancy. The governing equations for the analysis when pressure is constant across the boundary-layer flow and Grashof number is asymptotically large are presented, non-dimensionalized using the appropriate variables, and solved numerically. It is worth concluding that minimal velocity is obtainable when the impermeable surface is stagnant. Reverse is the case as minimal temperature distribution is obtainable when the impermeable surface is moving. Minimal local skin friction coefficients are obtainable when the volume of nanoparticles (i.e., spherical carbon nanotubes, cylindrical graphene, and platelet copper) is sufficiently large as water-based ternary-hybrid nanofluid flows on a stagnant impermeable wall.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Change history

References

  1. Gueon D, Hwang JT, Yang SB, Cho E, Sohn K, Yang DK, Moon JH. Spherical macroporous carbon nanotube particles with ultrahigh sulfur loading for lithium-sulfur battery cathodes. ACS Nano. 2018;12(1):226–33. https://doi.org/10.1021/acsnano.7b05869.

    Article  CAS  PubMed  Google Scholar 

  2. Zhang J, Wang R, Liu E, Gao X, Sun Z, Xiao FS, Su DS. Spherical structures composed of multiwalled carbon nanotubes: formation mechanism and catalytic performance. Angewandte Chemie Int Ed. 2012;51(30):7581–5. https://doi.org/10.1002/anie.201200969.

  3. Ando T. The electronic properties of graphene and carbon nanotubes. NPG Asia Mater. 2009;1(1):17–21.

    Article  Google Scholar 

  4. Zhu Z. An overview of carbon nanotubes and graphene for biosensing applications. Nano-Micro lett. 2017;9(3):1–24. https://doi.org/10.1007/s40820-017-0128-6.

    Article  CAS  Google Scholar 

  5. Elnaqeeb T, Animasaun IL, Shah NA. Ternary-hybrid nanofluids: significance of suction and dual-stretching on three-dimensional flow of water conveying nanoparticles with various shapes and densities. Zeitschrift fur Naturforschung A. 2021;76(3):231–43. https://doi.org/10.1515/zna-2020-0317.

    Article  CAS  Google Scholar 

  6. Gawande MB, Goswami A, Felpin FX, Asefa T, Huang X, Silva R, Varma RS. Cu and Cu-based nanoparticles: synthesis and applications in catalysis. Chem Rev. 2016;116(6):3722–811.

    Article  CAS  PubMed  Google Scholar 

  7. Song YQ, Obideyi BD, Shah NA, Animasaun IL, Mahrous YM, Chung JD. Significance of haphazard motion and thermal migration of alumina and copper nanoparticles across the dynamics of water and ethylene glycol on a convectively heated surface. Case Stud Thermal Eng. 2021;26: 101050. https://doi.org/10.1016/j.csite.2021.101050.

    Article  Google Scholar 

  8. Jen T-C, Lavine AS. A variable heat flux model of heat transfer in grinding with boiling. J Heat Transfer. 1996;118(2):463–70. https://doi.org/10.1115/1.2825867.

    Article  CAS  Google Scholar 

  9. Landucci G, Cozzani V, Birk M. Heat radiation effects. In domino effects in the process industries: Industries, modelling, prevention and managing. Edited by Genserik Reniers, 2013: pp. 70 - 115. Elsevier UK. ISBN: 978-0-444-54323-3. https://doi.org/10.1016/B978-0-444-54323-3.00005-1

  10. Cheng CY. Natural convection heat and mass transfer from a vertical truncated cone in a porous medium saturated with a non-Newtonian fluid with variable wall temperature and concentration. Int Commun Heat Mass Transfer. 2009;36(6):585–9. https://doi.org/10.1016/j.icheatmasstransfer.2009.03.011.

    Article  CAS  Google Scholar 

  11. Davies WA III, Hrnjak P. A correlation for heat transfer coefficient during stratified steam condensation in large flattened tubes with variable inclination and wall temperature. Int J Heat Mass Transf. 2020;146: 118666. https://doi.org/10.1016/j.ijheatmasstransfer.2019.118666.

    Article  Google Scholar 

  12. Khalifa AJN, Hussien ZA. Natural convection heat transfer from a single and multiple heated thin cylinders in water. Heat Mass Transf. 2015;51(11):1579–86. https://doi.org/10.1007/s00231-015-1524-4.

    Article  Google Scholar 

  13. Chandra Roy N. Magnetohydrodynamic natural convection flow of a nanofluid due to sinusoidal surface temperature variations. Phys Fluids. 2020;32(2): 022003. https://doi.org/10.1063/1.5143516.

    Article  CAS  Google Scholar 

  14. Sheng DY, Jonsson PG. Effect of thermal buoyancy on fluid flow and residence-time distribution in a single-strand tundish. Materials. 2021;14(8):1906. https://doi.org/10.3390/ma14081906.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Mahdy A. Simultaneous impacts of MHD and variable wall temperature on transient mixed Casson nanofluid flow in the stagnation point of rotating sphere. Appl Math Mech. 2018;39(9):1327–40. https://doi.org/10.1007/s10483-018-2365-9.

    Article  Google Scholar 

  16. Mahdy A. Entropy generation of tangent hyperbolic nanofluid flow past a stretched permeable cylinder: variable wall temperature. Proceedings of the Institution of Mechanical Engineers, Part E: J Process Mech Eng. 2019;233(3):570–80. https://doi.org/10.1177/0954408918774898.

  17. Mahanthesh B. Flow and heat transport of nanomaterial with quadratic radiative heat flux and aggregation kinematics of nanoparticles. Int Commun Heat Mass Transfer. 2021;127: 105521. https://doi.org/10.1016/j.icheatmasstransfer.2021.105521.

    Article  CAS  Google Scholar 

  18. Mackolil J, Mahanthesh B. Computational simulation of surface tension and gravitation-induced convective flow of a nanoliquid with cross-diffusion: An optimization procedure. Appl Math Comput. 2022;425: 127108. https://doi.org/10.1016/j.amc.2022.127108.

    Article  Google Scholar 

  19. Basavarajappa M, Bhatta D. Unsteady nonlinear convective flow of a nanofluid over a vertical plate due to impulsive motion: optimization and sensitivity analysis. SSRN Electron J 2022. https://doi.org/10.2139/ssrn.4046417.

  20. Basavarajappa M, Bhatta D. Heat and mass transfer of a molten polymer conveying nanoparticles in a wire coating process with temperature-dependent fluid properties: Optimization using Response surface method. Int Commun Heat Mass Transfer. 2022;133: 105941. https://doi.org/10.1016/j.icheatmasstransfer.2022.105941.

    Article  CAS  Google Scholar 

  21. Pop Ioan, Ingham Derek B. Convective heat transfer: mathematical and computational modelling of viscous fluids and porous media. Pergamon New York: Elsevier Science & Technology Books; 2001. 978-0-08-043878-8.

  22. Merkin JH. A note on the similarity solutions for free convection on a vertical plate. J Eng Math. 1985;19(3):189–201. https://doi.org/10.1007/bf00042533.

    Article  Google Scholar 

  23. Buyuk Ogut E. Natural convection of water-based nanofluids in an inclined enclosure with a heat source. Int J Therm Sci. 2009;48(11):2063–73. https://doi.org/10.1016/j.ijthermalsci.2009.03.014.

    Article  CAS  Google Scholar 

  24. Devarajan M, Parasumanna Krishnamurthy N, Balasubramanian M, Ramani B, Wongwises S, Abd El-Naby K, Sathyamurthy R. Thermophysical properties of CNT and \(CNT/Al_2O_3\) hybrid nanofluid. Micro Nano Lett. 2018;13(5):617–21. https://doi.org/10.1049/mnl.2017.0029.

    Article  CAS  Google Scholar 

  25. Animasaun IL, Shah NA, Wakif A, Mahanthesh B, Sivaraj R, Koriko OK. Ratio of momentum diffusivity to thermal diffusivity: introduction, meta-analysis, and scrutinization. New York: Chapman and Hall/CRC; 2022. 13: 978-1032108520, ISBN-10: 1032108525, ISBN9781003217374.

  26. Animasaun IL, Kumar TK, NOAH FA, Okoya SS, Al-Mdallal QM, Bhatti MM. Insight into Darcy flow of ternary?hybrid nanofluid on horizontal surfaces: Exploration of the effects of convective and unsteady acceleration. ZAMM - J Appl Mathemat Mech/Zeitschrift Fur Angewandte Mathematik Und Mechanik. Portico 2022. https://doi.org/10.1002/zamm.202200197

  27. Deng L, Young RJ, Kinloch IA, Sun R, Zhang G, Noe L, Monthioux M. Coefficient of thermal expansion of carbon nanotubes measured by Raman spectroscopy. Appl Phys Lett. 2014;104(5): 051907. https://doi.org/10.1063/1.4864056.

    Article  CAS  Google Scholar 

  28. Xiu W, Animasaun IL, Al-Mdallal QM, Alzahrani AK, Muhammad T. Dynamics of ternary-hybrid nanofluids due to dual stretching on wedge surfaces when volume of nanoparticles is small and large: forced convection of water at different temperatures. Int Commun Heat Mass Transfer. 2022;137: 106241. https://doi.org/10.1016/j.icheatmasstransfer.2022.106241.

    Article  CAS  Google Scholar 

  29. Sahoo RR. Heat transfer and second law characteristics of radiator with dissimilar shape nanoparticle. Based ternary hybrid nanofluid. J Therm Anal Calorim. 2021;146:827–39. https://doi.org/10.1007/s10973-020-10039-9.

    Article  CAS  Google Scholar 

  30. Saleem S, Animasaun IL, Yook Se-Jin, Al-Mdallal Qasem M, Shah Nehad Ali, Faisal Muhammad. Insight into the motion of water conveying three kinds of nanoparticles shapes on a horizontal surface: Significance of thermo-migration and Brownian motion. Surf Interfaces. 2022;30: 101854. https://doi.org/10.1016/j.surfin.2022.101854.

    Article  Google Scholar 

  31. Sahu M, Sarkar J. Steady-state energetic and exergetic performances of single-phase natural circulation loop with hybrid nanofluids. J Heat Transfer. 2019;141(8): 082401. https://doi.org/10.1115/1.4043819.

    Article  Google Scholar 

  32. Ho CJ, Huang JB, Tsai PS, Yang YM. Preparation and properties of hybrid water-based suspension of Al2O3 nanoparticles and MEPCM particles as functional forced convection fluid. Int Commun Heat Mass Transfer. 2010;37(5):490–4. https://doi.org/10.1016/j.icheatmasstransfer.2009.12.007.

    Article  CAS  Google Scholar 

  33. Takabi B, Salehi S. Augmentation of the heat transfer performance of a sinusoidal corrugated enclosure by employing hybrid nanofluid. Adv Mech Eng. 2014;6: 147059. https://doi.org/10.1155/2014/147059.

    Article  CAS  Google Scholar 

  34. Ahammed N, Asirvatham LG, Wongwises S. Entropy generation analysis of graphene-alumina hybrid nanofluid in multiport minichannel heat exchanger coupled with thermoelectric cooler. Int J Heat Mass Transf. 2016;103:1084–97. https://doi.org/10.1016/j.ijheatmasstransfer.2016.07.070.

    Article  CAS  Google Scholar 

  35. Animasaun IL, Yook S-J, Muhammad Taseer, Mathew Alphonsa. Dynamics of ternary-hybrid nanofluid subject to magnetic flux density and heat source or sink on a convectively heated surface. Surf Interfaces. 2022;28: 101654. https://doi.org/10.1016/j.surfin.2021.101654.

    Article  CAS  Google Scholar 

  36. Rudyak V, Belkin AA, Tomilina EA, Egorov VV. Nanoparticle friction force and effective viscosity of nanosuspensions. Defect Diffusion Forum. 2008;273–276:566–71. https://doi.org/10.4028/www.scientific.net/ddf.273-276.566.

    Article  Google Scholar 

  37. Wang X, Xu X, Choi SUS. Thermal conductivity of nanoparticle - fluid mixture. J Thermophys Heat Transfer. 1999;13(4):474–80. https://doi.org/10.2514/2.6486.

    Article  CAS  Google Scholar 

  38. Kalidasan K, Velkennedy R, Kanna PR. Laminar natural convection of Copper - Titania/Water hybrid nanofluid in an open-ended C - shaped enclosure with an isothermal block. J Mol Liq. 2017;246:251–8. https://doi.org/10.1016/j.molliq.2017.09.071.

    Article  CAS  Google Scholar 

  39. Cao W, Animasaun IL, Yook Se-Jin, Oladipupo VA, Ji Xianjun. Simulation of the dynamics of colloidal mixture of water with various nanoparticles at different levels of partial slip: Ternary-hybrid nanofluid. Int Commun Heat Mass Transfer. 2022;135: 106069. https://doi.org/10.1016/j.icheatmasstransfer.2022.106069.

    Article  CAS  Google Scholar 

  40. Timofeeva EV, Routbort JL, Singh D. Particle shape effects on thermophysical properties of alumina nanofluids. J Appl Phys. 2009;106(1): 014304. https://doi.org/10.1063/1.3155999.

    Article  CAS  Google Scholar 

  41. Hamilton RL, Crosser OK. Thermal conductivity of heterogeneous two-component systems. Indust Eng Chem Fundamentals. 1962;1(3):187–91. https://doi.org/10.1021/i160003a005.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors extends their appreciation to the Deanship of Scientific Research at King Khalid University, Abha 61413, Saudi Arabia, for funding this work through Big Groups Project under grant number RGP.2/21/43.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to I. L. Animasaun or Qasem M. Al-Mdallal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised: The first author’s second affiliation “Department of Mathematical Sciences, United Arab Emirates University, PMB 15551, Al Ain, Abu Dhabi, United Arab Emirates“ was missed out. The corrected affiliation is included.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Animasaun, I.L., Oke, A.S., Al-Mdallal, Q.M. et al. Exploration of water conveying carbon nanotubes, graphene, and copper nanoparticles on impermeable stagnant and moveable walls experiencing variable temperature: thermal analysis. J Therm Anal Calorim 148, 4513–4522 (2023). https://doi.org/10.1007/s10973-023-11997-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-023-11997-6

Keywords

Navigation