Skip to main content
Log in

Experimental research on the dynamic response characteristics of proton exchange membrane fuel cell thermal management using micro-heat pipe array

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The dynamic response characteristic is an important performance indicator of the proton exchange membrane fuel cell (PEMFC), which has a great influence on the durability and reliability. The cooling capacity is an important factor that affects the stability of the PEMFC output after the change. This research proposes to apply the micro-heat pipe array (MHPA) to the thermal management of PEMFC. A novel MHPA-PEMFC stack is designed, and four cases involving comparative dynamic response experiments are studied. The results show that compared with the traditional air-cooled PEMFC, the MHPA-PEMFC significantly reduces the maximum step voltage, dynamic internal resistance and step temperature, shortens the temperature response time and improves the internal temperature uniformity. In the case where the output current stepped up from 10 to 30 A, the maximum step voltage and the maximum dynamic impedance of MHPA-PEMFC are lower than those of PEMFC by 0.449 V and 0.037 Ω, respectively. The maximum step temperature has been reduced by 4.44 °C, and the temperature response time has been reduced by 180 s. The research results provide a basis for using MHPA in PEMFC thermal management applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Abbreviations

MHPA:

Micro-heat pipe array

TMS:

Thermal management system

PEMFC:

Proton exchange membrane fuel cells

E r :

Theoretical reversible voltage (V)

H t :

Total heat transfer coefficient (W ºC1)

I :

Output current (A)

n :

Number

P e :

The power output (W)

R d :

Nominal dynamic internal resistance (Ω)

t :

Time (s)

T :

Temperature (K)

V :

Output voltage (V)

V :

Step voltage (V)

T :

Step temperature (ºC)

αV :

Voltage response rate (V s-1)

ε V :

Voltage fluctuation rate

ε T :

Temperature fluctuation rate

τ V :

Voltage response time (s)

τ T :

Temperature response time(s)

a :

Ambient

i :

Transient moment

max:

Maximum

min:

Minimum

s :

Steady state

T :

Temperature

V :

Voltage

References

  1. https://www.iea.org/fuels-and-technologies/hydrogen

  2. Pourkiaei SM, Ahmadi MH, Hasheminejad SM. Modeling and experimental verification of a 25W fabricated PEM fuel cell by parametric and GMDH-type neural network. Mech Ind. 2016;17:105. https://doi.org/10.1051/meca/2015050.

    Article  CAS  Google Scholar 

  3. Zhang G, Kandlikar SG. A critical review of cooling techniques in proton exchange membrane fuel cell stacks. Int J Hydrogen Energy. 2012;37:2412–29. https://doi.org/10.1016/j.ijhydene.2011.11.010.

    Article  CAS  Google Scholar 

  4. Jradi M, Riffat S. Tri-generation systems: energy policies, prime movers, cooling technologies, configurations and operation strategies. Renew Sustain Energy Rev. 2014;32:396–415. https://doi.org/10.1016/j.rser.2014.01.039.

    Article  Google Scholar 

  5. Chen H, Pei P, Song M. Lifetime prediction and the economic lifetime of proton exchange membrane fuel cells. Appl Energy. 2015;142:154–63. https://doi.org/10.1016/j.apenergy.2014.12.062.

    Article  Google Scholar 

  6. Weydahl H, Møller-Holst S, Hagen G, Børresen B. Transient response of a proton exchange membrane fuel cell. J Power Sour. 2007;171:321–30. https://doi.org/10.1016/j.jpowsour.2007.06.073.

    Article  CAS  Google Scholar 

  7. Cho J, Kim H, Min K. Transient response of a unit proton-exchange membrane fuel cell under various operating conditions. J Power Sour. 2008;185:118–28. https://doi.org/10.1016/j.jpowsour.2008.06.073.

    Article  CAS  Google Scholar 

  8. Lee Y, Kim B, Kim Y. Effects of self-humidification on the dynamic behavior of polymer electrolyte fuel cells. Int J Hydrogen Energy. 2009;34:1999–2007. https://doi.org/10.1016/j.ijhydene.2008.12.042.

    Article  CAS  Google Scholar 

  9. Yan Q, Toghiani H, Causey H. Steady state and dynamic performance of proton exchange membrane fuel cells (PEMFCs) under various operating conditions and load changes. J Power Sour. 2006;161:492–502. https://doi.org/10.1016/j.jpowsour.2006.03.077.

    Article  CAS  Google Scholar 

  10. Zhang Z, Jia L, Wang X, Ba L. Effects of inlet humidification on PEM fuel cell dynamic behaviors. Int J Energy Res. 2011;35:376–88. https://doi.org/10.1002/er.1692.

    Article  CAS  Google Scholar 

  11. Tang Y, Yuan W, Pan M, Li Z, Chen G, Li Y. Experimental investigation of dynamic performance and transient responses of a kW-class PEM fuel cell stack under various load changes. Appl Energy. 2010;87:1410–7. https://doi.org/10.1016/j.apenergy.2009.08.047.

    Article  CAS  Google Scholar 

  12. Meng H. Numerical investigation of transient responses of a PEM fuel cell using a two-phase non-isothermal mixed-domain model. J Power Sour. 2007;171:738–46. https://doi.org/10.1016/j.jpowsour.2007.06.029.

    Article  CAS  Google Scholar 

  13. Mohamed WANW, Talib SFA, Zakaria IA, Mamat AMI, Daud WRW. Effect of dynamic load on the temperature profiles and cooling response time of a proton exchange membrane fuel cell. J Energy Inst. 2018;91:349–57. https://doi.org/10.1016/j.joei.2017.02.006.

    Article  CAS  Google Scholar 

  14. Zhao J, Jian Q, Luo L, Huang B, Cao S, Huang Z. Dynamic behavior study on voltage and temperature of proton exchange membrane fuel cells. Appl Therm Eng. 2018;145:343–51. https://doi.org/10.1016/j.applthermaleng.2018.09.030.

    Article  CAS  Google Scholar 

  15. Strahl S, Husar A, Puleston P, Riera J. Performance improvement by temperature control of an open-cathode PEM fuel cell system. Fuel Cells. 2014;14:466–78. https://doi.org/10.1002/fuce.201300211.

    Article  CAS  Google Scholar 

  16. Liu P, Xu S, Fu J, Liu C. Experimental investigation on the voltage uniformity for a PEMFC stack with different dynamic loading strategies. Energy Convers Manage. 2020;45:26490–500. https://doi.org/10.1016/j.ijhydene.2020.05.070.

    Article  CAS  Google Scholar 

  17. Li X, Deng Z, Wei D, Xu C, Cao G. Parameter optimization of thermal-model-oriented control law for PEM fuel cell stack via novel genetic algorithm. Energy Convers Manage. 2011;52:3290–300. https://doi.org/10.1016/j.enconman.2011.05.012.

    Article  Google Scholar 

  18. Soltani M, Mohammad Taghi Bathaee S. Development of an empirical dynamic model for a Nexa PEM fuel cell power module. Energy Convers Manage. 2010;51:2492–500. https://doi.org/10.1016/j.enconman.2010.05.012.

    Article  CAS  Google Scholar 

  19. A. Faghri, Integrated bipolar plate heat pipe for fuel cell stacks. US patent 2005, No.0037253.

  20. Faghri A, Guo Z. Integration of heat pipe into fuel cell technology. Heat Transfer Eng. 2008;29:232–8. https://doi.org/10.1080/01457630701755902.

    Article  CAS  Google Scholar 

  21. Oro MV, Bazzo E. Flat heat pipes for potential application in fuel cell cooling. Appl Therm Eng. 2015;90:848–57. https://doi.org/10.1016/j.applthermaleng.2015.07.055.

    Article  Google Scholar 

  22. Shirzadi N, Roshandel R, Shafii M. Integration of miniature heat pipes into a proton exchange membrane fuel cell for cooling applications. Heat Transfer Eng. 2016;38:1595–605. https://doi.org/10.1080/01457632.2016.1262722.

    Article  CAS  Google Scholar 

  23. Zhao J, Huang Z, Jian B, Bai X, Jian Q. Thermal performance enhancement of air-cooled proton exchange membrane fuel cells by vapor chambers. Energy Convers Manage. 2020;213:112830. https://doi.org/10.1016/j.enconman.2020.112830.

    Article  CAS  Google Scholar 

  24. Luo L, Huang B, Bai X, Cheng Z, Jian Q. Temperature uniformity improvement of a proton exchange membrane fuel cell stack with ultra-thin vapor chambers. Appl Energy. 2020;270:115192. https://doi.org/10.1016/j.apenergy.2020.115192.

    Article  CAS  Google Scholar 

  25. Huang Z, Jian Q, Zhao J. Experimental study on improving the dynamic characteristics of open-cathode PEMFC stack with dead-end anode by condensation and circulation of hydrogen. Int J Hydrogen Energy. 2020;45:19858–68. https://doi.org/10.1016/j.ijhydene.2020.05.108.

    Article  CAS  Google Scholar 

  26. Chen Y, Jian Q, Zhao J, Bai X, Li D, Huang Z. Experimental analysis of dynamic performance of air-cooled PEMFC stack integrated ultrathin vapor chambers under new European driving cycle. Int J Energy Res. 2021;45:20089–103. https://doi.org/10.1002/er.7085.

    Article  Google Scholar 

  27. Huang B, Jian Q, Luo L, Zhao J, Huang Z, Wang X. Cell and stack-level study of steady-state and transient behaviour of temperature uniformity of open-cathode proton exchange membrane fuel cells. Int J Energy Res. 2019. https://doi.org/10.1002/er.4810.

    Article  Google Scholar 

  28. Y.H. Zhao, K.R. Zhang, Y.H. Diao, Heat pipe with micro-pore tubes array and making method thereof and heat exchanging system. US patent 2011, 020377.

  29. Wang G, Quan Z, Zhao Y, Wang H. Performance of a flat-plate micro heat pipe at different filling ratios and working fluids. Appl Therm Eng. 2019;146:459–68. https://doi.org/10.1016/j.applthermaleng.2018.10.014.

    Article  CAS  Google Scholar 

  30. Wang L, Quan Z, Zhao Y, Yang M, Zhang J. Experimental investigation on thermal management of proton exchange membrane fuel cell stack using micro heat pipe array. Appl Therm Eng. 2022. https://doi.org/10.1016/j.applthermaleng.2022.118831.

    Article  Google Scholar 

  31. Kim HI, Chan YC, Jin HN, et al. A simple dynamic model for polymer electrolyte membrane fuel cell (PEMFC) power modules: parameter estimation and model prediction[J]. Int J Hydrogen Energy. 2010;35(8):3656–63. https://doi.org/10.1016/j.ijhydene.2010.02.002.

    Article  CAS  Google Scholar 

  32. Gertsbakh, Ilya. Measurement uncertainty: error propagation formula. Springer Berlin Heidelberg 2003. https://doi.org/10.1016/10.1007/978-3-662-08583-7_5.

  33. Jung G, Lo K, Su A, Weng F, Tu C, Yang T, Chan S. Experimental evaluation of an ambient forced-feed air-supply PEM fuel cell. Int J Hydrogen Energy. 2008;33:2980–5. https://doi.org/10.1016/j.ijhydene.2008.03.056.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Foundation of Inner Mongolia Autonomous Region of China (2020MS05023).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhenhua Quan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Quan, Z., Zhao, Y. et al. Experimental research on the dynamic response characteristics of proton exchange membrane fuel cell thermal management using micro-heat pipe array. J Therm Anal Calorim 148, 4377–4388 (2023). https://doi.org/10.1007/s10973-023-11988-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-023-11988-7

Keywords

Navigation