Skip to main content
Log in

Non-isothermal crystallization kinetics of polypropylene homopolymer/impact copolymer composites

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Crystallization kinetics of an isotactic homopolymer polypropylene (HPP), an impact copolymer polypropylene (ICPP), and their composites were studied in this work. The Avrami–Jeziorny and Mo models successfully described the crystallization process. When the ICPP content increased, the crystallization rate first increased and then decreased with the highest crystallization rate at the ICPP content of 60 mass%. The nucleation activity kept increasing with the rise of the ICPP content, demonstrating that the rubber phase in the ICPP acted as a nucleating agent and prompted the nucleation process. The decrease in crystallization rate when the ICPP content was higher than 60 mass% might be caused by the decrease in chain mobility and the increase in crystal–crystal interactions. When the ICPP content exceeded 60 mass%, the crystallization activation energy increased evidently, indicating lower polymer chain mobility. Meanwhile, the Avrami exponent, n, decreased, suggesting limited crystal growth space and higher crystal–crystal interactions. The nucleation activity showed high correlations to the mechanical and thermal properties of the materials. The Avrami exponent also had relatively high correlations to these properties. The results improved the understanding of the crystallization behaviors of the HPP–ICPP composites and helped predict their potential mechanical behavior changes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Maddah HA. Polypropylene as a promising plastic: a review. Am J Polym Sci. 2016;6:1–11. https://doi.org/10.5923/j.ajps.20160601.01.

    Article  CAS  Google Scholar 

  2. Mileva D, Tranchida D, Gahleitner M. Designing polymer crystallinity: an industrial perspective. Polym Cryst. 2018;1:e10009. https://doi.org/10.1002/pcr2.10009.

    Article  CAS  Google Scholar 

  3. Karian H. Handbook of polypropylene and polypropylene composites, revised and expanded. Boca Raton: CRC press; 2003.

    Book  Google Scholar 

  4. Liang J, Li R. Rubber toughening in polypropylene: a review. J Appl Polym Sci. 2000;77:409–17. https://doi.org/10.1002/(SICI)1097-4628(20000711)77:2%3c409::AID-APP18%3e3.0.CO;2-N.

    Article  CAS  Google Scholar 

  5. Mirabella FM Jr. Impact polypropylene copolymers: fractionation and structural characterization. Polym. 1993;34:1729–35. https://doi.org/10.1016/0032-3861(93)90333-6.

    Article  CAS  Google Scholar 

  6. Magagula SI, Ndiripo A, JohannesvanReenen A. Heterophasic ethylene-propylene copolymers: New insights on complex microstructure by combined molar mass fractionation and high temperature liquid chromatography. Polym Degrad Stab. 2020;171:109022. https://doi.org/10.1016/j.polymdegradstab.2019.109022.

    Article  CAS  Google Scholar 

  7. Hodgkinson J, Savadori A, Williams J. A fracture mechanics analysis of polypropylene/rubber blends. J Mater Sci. 1983;18:2319–36. https://doi.org/10.1007/BF00541836.

    Article  CAS  Google Scholar 

  8. Peng Y, Liu S, Wang P, Wang Y, Wang X. Formulating polypropylene with desired mechanical properties through melt compounding of homopolymer and impact copolymer. Polym Cryst. 2022;2022:3084446. https://doi.org/10.1155/2022/3084446.

    Article  CAS  Google Scholar 

  9. Dal Castel C, Pelegrini T Jr, Barbosa R, Liberman S, Mauler R. Properties of silane grafted polypropylene/montmorillonite nanocomposites. Compos Part A Appl Sci. 2010;41:185–91. https://doi.org/10.1016/j.compositesa.2009.09.017.

    Article  CAS  Google Scholar 

  10. Causin V, Marega C, Marigo A, Ferrara G, Ferraro A. Morphological and structural characterization of polypropylene/conductive graphite nanocomposites. Eur Polym J. 2006;42:3153–61. https://doi.org/10.1016/j.eurpolymj.2006.08.017.

    Article  CAS  Google Scholar 

  11. Tjong SC, Xu SA. Non-isothermal crystallization kinetics of calcium carbonate-filled β-crystalline phase polypropylene composites. Polym Int. 1997;44:95–103. https://doi.org/10.1002/(SICI)1097-0126(199709)44:1%3c95::AID-PI821%3e3.0.CO;2-L.

    Article  CAS  Google Scholar 

  12. Ferreira C, Dal Castel C, Oviedo M, Mauler R. Isothermal and non-isothermal crystallization kinetics of polypropylene/exfoliated graphite nanocomposites. Thermochim Acta. 2013;553:40–8. https://doi.org/10.1016/j.tca.2012.11.025.

    Article  CAS  Google Scholar 

  13. Blázquez J, Conde C, Conde A. Non-isothermal approach to isokinetic crystallization processes: application to the nanocrystallization of HITPERM alloys. Acta Mater. 2005;53:2305–11. https://doi.org/10.1016/j.actamat.2005.01.037.

    Article  CAS  Google Scholar 

  14. Liu T, Mo Z, Wang S, Zhang H. Isothermal melt and cold crystallization kinetics of poly (aryl ether ether ketone ketone)(PEEKK). Eur Polym J. 1997;33:1405–14. https://doi.org/10.1063/1.4949642.

    Article  CAS  Google Scholar 

  15. Jeziorny A. Parameters characterizing the kinetics of the non-isothermal crystallization of poly (ethylene terephthalate) determined by DSC. Polym. 1978;19:1142–4. https://doi.org/10.1016/0032-3861(78)90060-5.

    Article  CAS  Google Scholar 

  16. Ozawa T. Kinetic analysis of derivative curves in thermal analysis. J Therm Anal. 1970;2:301–24. https://doi.org/10.1007/BF01911411.

    Article  CAS  Google Scholar 

  17. Ozawa T. Kinetics of non-isothermal crystallization. Polym. 1971;12:150–8. https://doi.org/10.1016/0032-3861(71)90041-3.

    Article  CAS  Google Scholar 

  18. Jayasree T, Predeep P. Non-isothermal crystallization behavior of Styrene butadiene rubber/high density polyethylene binary blends. J Therm Anal Calorim. 2012;108:1151–60. https://doi.org/10.1007/s10973-012-2257-y.

    Article  CAS  Google Scholar 

  19. Alvarez VA, Pérez CJ. Effect of different inorganic filler over isothermal and non-isothermal crystallization of polypropylene homopolymer. J Therm Anal Calorim. 2012;107:633–43. https://doi.org/10.1007/s10973-011-1705-4.

    Article  CAS  Google Scholar 

  20. Alghyamah AA, Elnour AY, Shaikh H, Haider S, Poulose AM, Al-Zahrani S, et al. Biochar/polypropylene composites: a study on the effect of pyrolysis temperature on crystallization kinetics, crystalline structure, and thermal stability. J King Saud Univ Sci. 2021;33:101409. https://doi.org/10.1016/j.jksus.2021.101409.

    Article  Google Scholar 

  21. Qiao Y, Jalali A, Yang J, Chen Y, Wang S, Jiang Y, et al. Non-isothermal crystallization kinetics of polypropylene/polytetrafluoroethylene fibrillated composites. J Mater Sci. 2021;56:3562–75. https://doi.org/10.1007/s10853-020-05328-5.

    Article  CAS  Google Scholar 

  22. Wang S, Zhang J. Non-isothermal crystallization kinetics of high density polyethylene/titanium dioxide composites via melt blending. J Therm Anal Calorim. 2014;115:63–71. https://doi.org/10.1007/s10973-013-3241-x.

    Article  CAS  Google Scholar 

  23. Menezes BRCd, Campos TMB, Montanheiro TLdA, Ribas RG, Cividanes LdS, Thim GP. Non-isothermal crystallization kinetic of polyethylene/carbon nanotubes nanocomposites using an isoconversional method. J Compos Sci. 2019;3:21. https://doi.org/10.3390/jcs3010021.

    Article  CAS  Google Scholar 

  24. Kourtidou D, Tarani E, Chrysafi I, Menyhard A, Bikiaris DN, Chrissafis K. Non-isothermal crystallization kinetics of graphite-reinforced crosslinked high-density polyethylene composites. J Therm Anal Calorim. 2020;142:1849–61. https://doi.org/10.1007/s10973-020-10085-3.

    Article  CAS  Google Scholar 

  25. Blaine RL. Determination of polymer crystallinity by DSC. TA123. 2010.

  26. Blaine RL. Thermal applications note. Polymer Heats of Fusion. 2002.

  27. Yuan Q, Awate S, Misra R. Nonisothermal crystallization behavior of polypropylene–clay nanocomposites. Eur Polym J. 2006;42:1994–2003. https://doi.org/10.1016/j.eurpolymj.2006.03.012.

    Article  CAS  Google Scholar 

  28. Huang Y, Chen G, Yao Z, Li H, Wu Y. Non-isothermal crystallization behavior of polypropylene with nucleating agents and nano-calcium carbonate. Eur Polym J. 2005;41:2753–60. https://doi.org/10.1016/j.eurpolymj.2005.02.034.

    Article  CAS  Google Scholar 

  29. Nofar M, Guo Y, Park CB. Double crystal melting peak generation for expanded polypropylene bead foam manufacturing. Ind Eng Chem Res. 2013;52:2297–303. https://doi.org/10.1021/ie302625e.

    Article  CAS  Google Scholar 

  30. Nofar M, Zhu W, Park C. Effect of dissolved CO2 on the crystallization behavior of linear and branched PLA. Polym. 2012;53:3341–53. https://doi.org/10.1016/j.polymer.2012.04.054.

    Article  CAS  Google Scholar 

  31. Chen S, Jin J, Zhang J. Non-isothermal crystallization behaviors of poly (4-methyl-pentene-1). J Therm Anal Calorim. 2011;103:229–36. https://doi.org/10.1007/s10973-010-0957-8.

    Article  CAS  Google Scholar 

  32. Wang J, Dou Q. Non-isothermal crystallization kinetics and morphology of isotactic polypropylene (iPP) nucleated with rosin-based nucleating agents. J Macromol Sci Phys. 2007;46:987–1001. https://doi.org/10.1080/00222340701457311.

    Article  CAS  Google Scholar 

  33. Buzarovska A. Crystallization of polymers (2nd edition) Volume 2: Kinetics and mechanisms. Edited by Leo Mandelkern. Cambridge University Press, Cambridge, 2004. ISBN 0 521 81682 3. pp 478. Polym Int. 2005;54:1466–7. https://doi.org/10.1002/pi.1883

  34. Zhang J, Chen S, Jin J, Shi X, Wang X, Xu Z. Non-isothermal melt crystallization kinetics for ethylene–acrylic acid copolymer in diluents via thermally induced phase separation. J Therm Anal Calorim. 2010;101:243–54. https://doi.org/10.1007/s10973-009-0619-x.

    Article  CAS  Google Scholar 

  35. Kissinger HE. Variation of peak temperature with heating rate in differential thermal analysis. J Res Natl Bur Stand. 1956;57:217–21. https://doi.org/10.6028/jres.057.026.

    Article  CAS  Google Scholar 

  36. Dobreva A, Gutzow I. Activity of substrates in the catalyzed nucleation of glass-forming melts. II. Experimental evidence. J Non-Cryst Solids. 1993;162:13–25. https://doi.org/10.1016/0022-3093(93)90737-I.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was performed under the financial assistance award 70NANB20H147 from the National Institute of Standards and Technology, U.S. Department of Commerce. This work is also supported by the Alabama Agricultural Experiment Station and the Hatch program of the National Institute of Food and Agriculture, U.S. Department of Agriculture [ALA031-1-19091]. The authors would also like to thank ExxonMobil Chemical Company for providing the polymer pellets for this research.

Author information

Authors and Affiliations

Authors

Contributions

PW was involved in investigation; data curation; methodology; validation; visualization; writing—original draft; writing—review and editing. YW was involved in conceptualization; methodology; data curation; writing—review and editing. XW contributed to data curation; validation; writing—review and editing. YP contributed to conceptualization; methodology; data curation; resources; supervision; funding acquisition; writing—review and editing. SL was involved in conceptualization; methodology; data curation; resources; supervision; funding acquisition; writing—review and editing. All authors critically reviewed the manuscript and approved the final version.

Corresponding authors

Correspondence to Yucheng Peng or Shaoyang Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, P., Wang, Y., Wang, X. et al. Non-isothermal crystallization kinetics of polypropylene homopolymer/impact copolymer composites. J Therm Anal Calorim 148, 3311–3323 (2023). https://doi.org/10.1007/s10973-023-11985-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-023-11985-w

Keywords

Navigation