Skip to main content
Log in

Soret and Dufour effects in the flow of Casson nanofluid in a vertical channel with thermal radiation: entropy analysis

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In this article, we have investigated the Soret and Dofour effects on Casson nanofluid flowing in a vertical channel with the impact of thermal radiation. Entropy generation in the system is also analysed for the considered flow. Channel walls are assumed to satisfy the convective constraints of heat transfer. The governing equations are modelled using Buongiorno’s model by incorporating the effects of Brownian motion and thermophoresis. The equations are non-dimensionalised by defining suitable dimensionless parameters. The resulting equations are nonlinear and coupled. These are tackled by employing differential transform method and MATLAB bvp4c code based on finite difference method. Velocity, temperature and entropy generation are plotted for various physical parameters which affects the flow and are analysed graphically. Both the methods are observed to give the results with good agreement. Casson fluid parameter intensifies both velocity field and thermal field. Dufour parameter enhances both velocity and thermal field. Soret parameter also positively accelerates both velocity and temperature. Casson parameter, Dufour parameter, Soret parameter minimise the entropy generation in the system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

Abbreviations

\({\text{Br}}\) :

Brinkman number

\({\text{Bi}}\) :

Biot number

\(C\) :

Nanoparticle concentration (\({\text{mol}}/{\text{m}}^{3}\))

\(c_{{\text{p}}}\) :

Specific heat capacity (\({\text{Jkg}}^{ - 1} {\text{K}}^{ - 1}\))

\(D_{{\text{T}}}\) :

Thermophoresis coefficient

\(D_{{\text{B}}}\) :

Brownian motion coefficient

\({\text{Du}}\) :

Dufour parameter

\(g\) :

Gravity acceleration (\({\text{ms}}^{ - 2}\))

\({\text{Gr}}\) :

Grashof number

\(k\) :

Heat conductivity (\({\text{Wm}}^{ - 1} {\text{K}}^{ - 1}\))

\(L\) :

Wall separation (\({\text{m}}\))

\({\text{Le}}\) :

Lewis number

\({\text{Nb}}\) :

Brownian movement parameter

\({\text{Nr}}\) :

Buoyancy parameter

\({\text{Nt}}\) :

Thermophoresis parameter

\({\text{Pr}}\) :

Prandtl number

\({\text{Sr}}\) :

Soret parameter

\(T\) :

Thermal field (\({\text{K}}\))

\(u\) :

Velocity (\({\text{ms}}^{ - 1}\))

\(\rho\) :

Density of the fluid (\({\text{kg}}\,{\text{m}}^{ - 3}\))

\(\theta\) :

Dimensionless temperature

\(\mu\) :

Viscosity (\({\text{Pas}}^{ - 1}\))

\(\phi\) :

Dimensionless nanoparticle concentration

\(\beta\) :

Casson fluid parameter

λ :

Concentration difference parameter

References

  1. Choi SUS, Eastman JA. Enhancing thermal conductivity of fluids with nanoparticles. In: The proceedings of the ASME international mechanical engineering congress and exposition, ASME. 1995. p. 99–105.

  2. Buongiorno J. Convective transport in nanofluids. J Heat Transf. 2006;128:240–50.

    Article  Google Scholar 

  3. Grosan T, Pop I. Fully developed mixed convection in a vertical channel filled by a nanofluid. J Heat Tran. 2012;134:082501.

    Article  Google Scholar 

  4. Sheikholeslami M, Farshad SA. Nanoparticles transportation with turbulent regime through a solar collector with helical tapes. Adv Powder Technol. 2022;33(3):103510.

    Article  CAS  Google Scholar 

  5. Sheikholeslami M, Jafaryar M. Hydrothermal analysis for a parabolic solar unit with wavy absorber pipe and nanofluid. Renew Energy. 2022;188:922–32.

    Article  CAS  Google Scholar 

  6. Sheikholeslami M, Halavi AH. Influence of novel turbulator on efficiency of solar collector system. Environ Technol Innova. 2022;26:102383.

    Article  CAS  Google Scholar 

  7. Sheikholeslami M, Ebrahimpour Z. Thermal improvement of linear Fresnel solar system utilizing Al2O3-water nanofluid and multiway twisted tape. Int J Therm Sci. 2022;176:107505.

    Article  CAS  Google Scholar 

  8. Sheikholeslami M. Analyzing melting process of paraffin through the heat storage with honeycomb configuration utilizing nanoparticles. J Energy Storage. 2022;52:104954.

    Article  Google Scholar 

  9. Sheikholeslami M. Numerical analysis of solar energy storage within a double pipe utilizing nanoparticles for expedition of melting. Solar Energy Mater Solar Cells. 2022;245:111856.

    Article  CAS  Google Scholar 

  10. Sheikholeslami M, Ebrahimpour Z. Nanofluid performance in a solar LFR system involving turbulator applying numerical simulation. Adv Powder Technol. 2022;33(8):103669.

    Article  CAS  Google Scholar 

  11. Casson N. Rheology of disperse systems in flow equation for pigment oil suspensions of the printing ink type. In: Mill CC, editor. Rheology of disperse systems. London, UK: Pergamon Press; 1959. p. 84–102.

    Google Scholar 

  12. Naga Rani P, Sarojamma G. Peristaltic transport of a Casson fluid in an asymmetric channel. Australas Phys Eng Sci Med. 2004;27:49.

    Article  PubMed  Google Scholar 

  13. Attia HA, Sayed-Ahmed ME. Transient MHD couette flow of a casson fluid between parallel plates with heat transfer. Italian J Pure Appl Math–n. 2010;27:19–38.

    Google Scholar 

  14. Akbar NS. Influence of magnetic field on peristaltic flow of a Casson fluid in an asymmetric channel: application in crude oil refinement. J Magn Magnetic Mater. 2015;378:463–8.

    Article  Google Scholar 

  15. Aman S, Khan I, Ismail Z, Salleh MZ, Alshomrani AS, Alghamdi MS. Magnetic field effect on poiseuille flow and heat transfer of carbon nanotubes along a vertical channel filled with casson fluid. AIP Adv. 2017;7:015036.

    Article  Google Scholar 

  16. Kumam P, Shah Z, Dawar A, Rasheed HU, Islam S. Entropy generation in mhd radiative flow of cnts casson nanofluid in rotating channels with heat source/sink. Math Probl Eng. 2019. https://doi.org/10.1155/2019/9158093.

    Article  Google Scholar 

  17. Archana M, Gireesha BJ, Prasannakumara BC, Gorla RSR. Influence of nonlinear thermal radiation on rotating flow of casson nanofluid. Nonlinear Eng. 2018;7(2):91–101.

    Article  Google Scholar 

  18. Mahabaleshwar US, Rekha MB, Vinay Kumar PN. Mass transfer characteristics of MHD Casson fluid flow past stretching/shrinking sheet. J Eng Thermophys. 2020;29:285–302.

    Article  CAS  Google Scholar 

  19. Sadiq K, Siddique I, Ali R, Jarad F. Impact of ramped concentration and temperature on MHD Casson nanofluid flow through a vertical channel. J Nanomater. 2021. https://doi.org/10.1155/2021/3743876.

    Article  Google Scholar 

  20. Aman S, Ismail Z, Salleh MZ, Khan I. Magnetohydrodynamic flow of Casson nanofluid in a channel filled with thermophoretic diffusion effect and multiple slips. In: Zakaria M, Abdul Majeed A, Hassan M, editors. Advances in mechatronics, manufacturing, and mechanical engineering. Lecture notes in mechanical engineering. Singapore: Springer; 2021. p. 232–46.

    Chapter  Google Scholar 

  21. Roja A, Gireesha BJ, Nagaraja B. Irreversibility investigation of Casson fluid flow in an inclined channel subject to a Darcy-Forchheimer porous medium: a numerical study. Appl Math Mech-Engl Ed. 2021;42:95–108.

    Article  Google Scholar 

  22. Grosan T, Pop I. Thermal radiation effect on fully developed mixed convection flow in a vertical channel. Tech Mech. 2007;27(1):37–47.

    Google Scholar 

  23. Ahmed N, Sarmah HK. Thermal radiation effect on a transient MHD flow with mass transfer past an impulsively fixed infinite vertical plate. Int J Appl Math Mech. 2009;5(5):87–98.

    Google Scholar 

  24. Prasad KV, Patil MB, Vaidya H. Mixed convective fully developed flow in a vertical channel in the presence of thermal radiation and viscous dissipation. Int J Appl Mech Eng. 2017;22(1):123–44.

    Article  CAS  Google Scholar 

  25. Sheikholeslami M, Ghasemi A. Solidification heat transfer of nanofluid in existence of thermal radiation by means of FEM. Int J Heat Mass Transf. 2017;123:418–31.

    Article  Google Scholar 

  26. Bhatti MM, Zeeshan A, Ijaz N, Beg OA, Kadir A. Mathematical modelling of nonlinear thermal radiation effects on EMHD peristaltic pumping of viscoelastic dusty fluid through a porous mediumduct. Eng Sci Technol Int J. 2017;20:1129–39.

    Google Scholar 

  27. Hayat T, Khan MI, Qayyum S, Alsaedi A, Khan MI. New thermodynamics of entropy generation minimization with nonlinear thermal radiation and nanomaterials. Phys Lett A. 2018;382(11):749–60.

    Article  CAS  Google Scholar 

  28. Kumar B, Seth GS, Nandkeolyar R, Chamkha AJ. Outlining the impact of induced magnetic field and thermal radiation on magneto-convection flow of dissipative fluid. Int J Therm Sci. 2019;146:106101.

    Article  CAS  Google Scholar 

  29. Zaidi HN, Yousif M, Nazia Nasreen S. Effects of thermal radiation, heat generation, and induced magnetic field on hydromagnetic free convection flow of couple stress fluid in an isoflux-isothermal vertical channel. J Appl Math. 2020. https://doi.org/10.1155/2020/4539531.

    Article  Google Scholar 

  30. Kavitha M, Rajesh V, Mallesh MP, Chamka AJ. Unsteady CNTs kerosene nanofluid flow past a vertical plate with heat transfer under the influence of thermal radiation. AIP Conf Proc. 2020;2246:020045.

    Article  CAS  Google Scholar 

  31. Wakif A, Chamkha A, Thumma T, Animasaun IL, Sehaqui R. Thermal radiation and surface roughness effects on the thermo-magneto-hydrodynamic stability of alumina–copper oxide hybrid nanofluids utilizing the generalized Buongiorno’s nanofluid model. J Therm Anal Calorim. 2021;143:1201–20.

    Article  CAS  Google Scholar 

  32. Srinivasacharya D, Kaladhar K. Soret and Dufour effects on free convection flow of a couple stress fluid in a vertical channel with chemical reaction. Chem Ind Chem Eng Q. 2013;19(1):45–55.

    Article  CAS  Google Scholar 

  33. Uwanta IJ, Usman H. On the influence of Soret and Dufour effects on MHD free convective heat and mass transfer flow over a vertical channel with constant suction and viscous dissipation. Int Sch Res Notices. 2014. https://doi.org/10.1155/2014/639159.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Hayat T, Abbasi FM, Al-Yami M, Monaquel S. Slip and Joule heating effects in mixed convection peristaltic transport of nanofluid with Soret and Dufour effects. J Mol Liq. 2014;194:93–9.

    Article  CAS  Google Scholar 

  35. Reddy PS, Chamkha AJ. Soret and Dufour effects on MHD convective flow of Al2O3–water and TiO2–water nanofluids past a stretching sheet in porous media with heat generation/absorption. Adv Powder Technol. 2016;27(4):1207–18.

    Article  CAS  Google Scholar 

  36. Gbadeyan JA, Oyekunlec TL, Fasogbon PF, Abubakar JU. Soret and Dufour effects on heat and mass transfer in chemically reacting MHD flow through a wavy channel. J Taibah Univ Sci. 2018;12(5):1–21.

    Article  Google Scholar 

  37. Alzahrani AK, Ullah MZ, Muhammad T. Numerical treatment for 3D squeezed flow in a rotating channel with Soret and Dufour effects. Front Phys. 2020;8:201.

    Article  Google Scholar 

  38. Ameer Ahammad N, Veera Krishna M. Numerical investigation of chemical reaction, Soret and Dufour impacts on MHD free convective gyrating flow through a vertical porous channel. Case Stud Therm Eng. 2021;28:101571.

    Article  Google Scholar 

  39. Umavathi JC, Chamkha Mohiuddin AJS. Combined effect of variable viscosity and thermal conductivity on free convection flow of a viscous fluid in a vertical channel. Int J Numer Meth Heat Fluid Flow. 2016;26(1):18–39.

    Article  Google Scholar 

  40. Umavathi JC, Sheremet MA, Mohiuddin S. Combined effect of variable viscosity and thermal conductivity on mixed convection flow of a viscous fluid in a vertical channel in the presence of first order chemical reaction. Eur J Mech B/Fluids. 2016;58:98–108.

    Article  Google Scholar 

  41. Ajibade AO, Tafida MK. The combined effect of variable viscosity and variable thermal conductivity on natural convection couette flow. Int J Thermofluids. 2020;5–6:100036.

    Article  Google Scholar 

  42. Hayat T, Nawaz S, Alsaedi A, Ahmad B. Entropy analysis for the peristaltic flow of third grade fluid with variable thermal conductivity. Eur Phys J Plus. 2020;135:421.

    Article  CAS  Google Scholar 

  43. Azam M, Xu T, Khan M. Numerical simulation for variable thermal properties and heat source/sink in flow of cross nanofluid over a moving cylinder. Int Commun Heat Mass Transf. 2020;118:104832.

    Article  CAS  Google Scholar 

  44. Shobha KC, Biradar M, Mallikarjun BP. Mixed convective flow with variable viscosity and variable thermal conductivity in a channel in the presence of first order chemical reaction with heat generation or absorption. J Appl Math Comput Mech. 2021;20(1):91–102.

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledged the financial support received for the research project entitled “Performance Improvement of Solar Thermal Systems using Magnetic Nanofluids” funded by the Department of Science and Technology (DST), Govt. of India under India-South Africa Joint Science and Technology Research Collaboration vide Sanction no.: DST/INT/South Africa/P-08/2021 dtd. 16 Sept. 2021.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suvanjan Bhattacharyya.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patil, M.B., Shobha, K.C., Bhattacharyya, S. et al. Soret and Dufour effects in the flow of Casson nanofluid in a vertical channel with thermal radiation: entropy analysis. J Therm Anal Calorim 148, 2857–2867 (2023). https://doi.org/10.1007/s10973-023-11962-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-023-11962-3

Keywords

Navigation