Skip to main content
Log in

Thermodynamic analysis on using titanium oxide/oil nanofluid integrated with porous medium in an evacuated tube solar water heater

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Solar water heaters are one of the most popular applications of renewable energy. So, many modifications have been performed on them to boost their performance. The novelty of the current experimental work is to simultaneous employment of porous medium inside water reservoir and oil-based nanofluid as circulating fluid. Accordingly, TiO2 nanoparticles with two concentrations of 0.2 and 0.4 mass% were dispersed in engine oil as-based fluid. As results, when concentration of 0.4 mass% TiO2 in engine oil is integrated with porous medium, the temperature is increased by 6.4 °C. This temperature enhancement leads to boost the thermal efficiency more than 41%. Moreover, thermal efficiency increments of 5.4% and 19% are occurred, for the cases of employing porous media and simultaneous application of 0.4 mass% TiO2/oil with porous media, respectively. The exergy efficiency was assessed by means of the modified approach. Accordingly, utilization of only porous medium creates 19.6% improvement in the exergy efficiency of the system. Furthermore, the entropy generation in the system was calculated, too, and the base case showed 14.7% more entropy generation compared with TiO2/oil integrated with porous medium. Lastly, a comparative study has been done to show the superiority of this work in comparison with the others.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

A :

Area (m2)

C p :

Specific heat (J kg1 K1)

Ex:

Exergy (W)

F :

Fluid

G :

Solar irradiation (W m2)

I :

Current (A)

\(\dot{m}\) :

Flow rate of circulating nanofluid (kg s1)

P :

Power (W)

\(\dot{{\varvec{Q}}}\) :

Heat emitted to the surrounding (W)

S :

Entropy generation (W K1)

T :

Temperature (°C)

V :

Voltage (V)

ΔT :

Temperature difference (°C)

amb:

Ambient

bf:

Base fluid

gen:

Generate

el:

Electrical

i:

Input

Lost:

Lost

np:

Nanoparticle

nf:

Nanofluid

o:

Output

pump:

Pump

sky:

Sky

sun:

Sun

th:

Thermal

\(\eta\) :

Energy efficiency (%)

\(\Psi\) :

Exergy efficiency (%)

\(\rho\) :

Density (kg m3)

\(\phi\) :

Mass concentration (%)

TiO2 :

Titanium oxide

mass%:

Mass concentration

vol%:

Volume concentration

CNT:

Carbon nanotube

References

  1. Jahangiri M, Karimi Shahmarvandi F, Alayi R. Renewable energy-based systems on a residential scale in southern coastal areas of Iran: trigeneration of heat, power, and hydrogen. J Renew Energy Environ. 2021;8(4):67–76.

    CAS  Google Scholar 

  2. Shiravi AH, Firoozzadeh M, Lotfi M. Experimental study on the effects of air blowing and irradiance intensity on the performance of photovoltaic modules using central composite design. Energy. 2022;238:121633. https://doi.org/10.1016/j.energy.2021.121633.

    Article  Google Scholar 

  3. Firoozzadeh M, Lotfi M, Shiravi AH. An experimental study on simultaneous use of metal fins and mirror to improve the performance of photovoltaic panels. Sustainability. 2022;14:16986.

    CAS  Google Scholar 

  4. Vasantha Malliga T, Jeba RR. Preparation and characterization of nanographite-and CuO-based absorber and performance evaluation of solar air-heating collector. J Therm Anal Calorim. 2017;129(1):233–40.

    CAS  Google Scholar 

  5. Bazregari MJ, Norouzi N, Gholinejad M, Khavasi E, Fani M. A 2E analysis and optimization of a hybrid solar humidification-dehumidification water desalination system and solar water heater. Iranian J Chem Chem Eng (IJCCE). 2021;41(6):2135–52.

    Google Scholar 

  6. Mehran S, Nikian M, Ghazi M, Zareiforoush H, Bagheri I. Modeling and optimization of energy consumption and performance characteristics of a solar assisted fluidized bed dryer. Energy Equip Syst. 2020;8(4):401–25.

    Google Scholar 

  7. Hoseini H, Mehdipour R. Evaluation of solar-chimney power plants with multiple-angle collectors. J Comput Appl Res Mech Eng (JCARME). 2018;8(1):85–96.

    Google Scholar 

  8. Sathish D, Jegadheeswaran S. Evolution and novel accomplishments of solar pond, desalination and pond coupled to desalination systems: a review. J Therm Anal Calorim. 2021;146(5):1923–69.

    CAS  Google Scholar 

  9. Mishra D, Jain H, Kumar N, Sodha MS. Experimental evaluation of solar integrated water heater. Scientia Iranica. 2020;27(4):1878–85.

    Google Scholar 

  10. Jahangiri M, Alidadi Shamsabadi A, Saghaei H. Comprehensive evaluation of using solar water heater on a household scale in Canada. J Renew Energy Environ. 2018;5(1):35–42.

    Google Scholar 

  11. Michael JJ, Iniyan S. Performance of copper oxide/water nanofluid in a flat plate solar water heater under natural and forced circulations. Energy Convers Manage. 2015;95:160–9.

    CAS  Google Scholar 

  12. Suthahar SJ, Sakthivel C, Vijayan V, Yokeshwaran R. Performance analysis of solar water heater by using TiO2 nanofluids. Mater Today Proce. 2020;21:817–9.

    Google Scholar 

  13. Vakili M, Hosseinalipour S, Delfani S, Khosrojerdi S, Karami M. Experimental investigation of graphene nanoplatelets nanofluid-based volumetric solar collector for domestic hot water systems. Sol Energy. 2016;131:119–30.

    CAS  Google Scholar 

  14. Moravej M, Doranehgard MH, Razeghizadeh A, Namdarnia F, Karimi N, Li LK, et al. Experimental study of a hemispherical three-dimensional solar collector operating with silver-water nanofluid. Sustain Energy Technol Assess. 2021;44:101043.

    Google Scholar 

  15. Abo-Elfadl S, Hassan H, El-Dosoky M. Energy and exergy assessment of integrating reflectors on thermal energy storage of evacuated tube solar collector-heat pipe system. Sol Energy. 2020;209:470–84.

    Google Scholar 

  16. Singh I, Vardhan S. Experimental investigation of an evacuated tube collector solar air heater with helical inserts. Renew Energy. 2021;163:1963–72.

    Google Scholar 

  17. Faizal M, Saidur R, Mekhilef S, Alim MA. Energy, economic and environmental analysis of metal oxides nanofluid for flat-plate solar collector. Energy Convers Manage. 2013;76:162–8.

    CAS  Google Scholar 

  18. Yousefi T, Veysi F, Shojaeizadeh E, Zinadini S. An experimental investigation on the effect of Al2O3–H2O nanofluid on the efficiency of flat-plate solar collectors. Renew Energy. 2012;39(1):293–8.

    CAS  Google Scholar 

  19. Shafiee M, Farbeh A, Firoozzadeh M. Experimental study on using oil-based nanofluids in a vacuumed tube solar water heater: exergy analysis. Int J Ambient Energy. 2022;2022:1–24. https://doi.org/10.1080/01430750.2022.2073267.

    Article  CAS  Google Scholar 

  20. Tajik J-A. Experimental investigation on the effect of partially metal foam inside the absorber of parabolic trough solar collector. Int J Eng. 2017;30(2):281–7.

    Google Scholar 

  21. Abdelsalam M, Sarafraz P, Cotton J, Lightstone M. Heat transfer characteristics of a hybrid thermal energy storage tank with phase change materials (PCMs) during indirect charging using isothermal coil heat exchanger. Sol Energy. 2017;157:462–76.

    CAS  Google Scholar 

  22. Fazilati MA, Alemrajabi AA. Phase change material for enhancing solar water heater, an experimental approach. Energy Convers Manage. 2013;71:138–45.

    CAS  Google Scholar 

  23. Kabeel A, El-Said EM, Abdulaziz M. Thermal solar water heater with H2O–Al2O3 nano-fluid in forced convection: experimental investigation. Int J Ambient Energy. 2017;38(1):85–93.

    CAS  Google Scholar 

  24. Arun M, Barik D, Sridhar K, Vignesh G. Performance analysis of solar water heater using Al2O3 nanoparticle with plain-dimple tube design. Exp Tech. 2022;16:1–14.

    Google Scholar 

  25. Sabiha M, Saidur R, Hassani S, Said Z, Mekhilef S. Energy performance of an evacuated tube solar collector using single walled carbon nanotubes nanofluids. Energy Convers Manage. 2015;105:1377–88.

    CAS  Google Scholar 

  26. Jafer Kutbudeen S, Logesh K, Mahalingam A, Vinoth Kanna I. Performance enhancement of solar collector using strip inserts and with water based Al2O3/DI water nanofluids. Energy Sour Part A Recovery Utili Environ Eff. 2021;3:1–12.

    Google Scholar 

  27. Sundar LS, Singh MK, Punnaiah V, Sousa AC. Experimental investigation of Al2O3/water nanofluids on the effectiveness of solar flat-plate collectors with and without twisted tape inserts. Renew Energy. 2018;119:820–33.

    CAS  Google Scholar 

  28. Eskandarya S, Maghsoodi S, Shahbazi Kootenaei A. Evaluation of LaBO3 (B = Mn, Cr, Mn0 .5Cr0. 5) perovskites in catalytic oxidation of trichloroethylene. Adv Environ Technol. 2019;5(1):1–8.

    Google Scholar 

  29. Shahnazari MR, Lari HR, Zia BM. Simulation of methane partial oxidation in porous media reactor for hydrogen production. Iranian J Chem Chem Eng (IJCCE). 2019;38(1):201–12.

    CAS  Google Scholar 

  30. Khazaei A, Nazari S, Karimi G, Ghaderi E, Mansouri Moradian K, Bagherpor Z. Synthesis and characterization of γ-alumina porous nanoparticles from sodium aluminate liquor with two different surfactants. Int J Nanosci Nanotechnol. 2016;12(4):207–14.

    Google Scholar 

  31. Aberoumand S, Jafarimoghaddam A. Experimental study on synthesis, stability, thermal conductivity and viscosity of Cu–engine oil nanofluid. J Taiwan Inst Chem Eng. 2017;71:315–22.

    CAS  Google Scholar 

  32. Fayzi P, Bastani D, Lotfi M. A note on the synergistic effect of surfactants and nanoparticles on rising bubble hydrodynamics. Chem Eng Process Process Intensif. 2020;155:108068.

    CAS  Google Scholar 

  33. Lotfi M, Javadi A, Lylyk S, Bastani D, Fainerman V, Miller R. Adsorption of proteins at the solution/air interface influenced by added non-ionic surfactants at very low concentrations for both components 1 dodecyl dimethyl phospine oxide. Coll Surf A Physicochem Eng Asp. 2015;475:62–8.

    CAS  Google Scholar 

  34. Shiravi AH, Shafiee M, Firoozzadeh M, Bostani H, Bozorgmehrian M. Experimental study on convective heat transfer and entropy generation of carbon black nanofluid turbulent flow in a helical coiled heat exchanger. J Therm Anal Calorim. 2021;145(2):597–607.

    CAS  Google Scholar 

  35. Yang L, Mao M, Huang J-n, Ji W. Enhancing the thermal conductivity of SAE 50 engine oil by adding zinc oxide nano-powder: an experimental study. Powder Technol. 2019;356:335–41.

    CAS  Google Scholar 

  36. Sardarabadi M, Passandideh-Fard M. Experimental and numerical study of metal-oxides/water nanofluids as coolant in photovoltaic thermal systems (PVT). Sol Energy Mater Sol Cells. 2016;157:533–42.

    CAS  Google Scholar 

  37. Firoozzadeh M, Shiravi AH, Chandel SS. An experimental analysis of enhancing efficiency of photovoltaic modules using straight and zigzag fins. J Therm Anal Calorim. 2022;147(16):8827–39. https://doi.org/10.1007/s10973-021-11178-3.

    Article  CAS  Google Scholar 

  38. Siuta-Olcha A, Cholewa T, Dopieralska-Howoruszko K. Experimental studies of thermal performance of an evacuated tube heat pipe solar collector in Polish climatic conditions. Environ Sci Pollut Res. 2021;28(12):14319–28.

    Google Scholar 

  39. Xuan Y, Roetzel W. Conceptions for heat transfer correlation of nanofluids. Int J Heat Mass Transf. 2000;43(19):3701–7.

    CAS  Google Scholar 

  40. Mohebbi K, Rafee R, Talebi F. Effects of rib shapes on heat transfer characteristics of turbulent flow of Al2O3–water nanofluid inside ribbed tubes. Iranian J Chem Chem Eng (IJCCE). 2015;34(3):61–77.

    CAS  Google Scholar 

  41. Shiravi AH, Firoozzadeh M, Passandideh-Fard M. A modified exergy evaluation of using carbon-black/water/EG nanofluids as coolant of photovoltaic modules. Environ Sci Pollut Res. 2022;29(38):57603–17.

    CAS  Google Scholar 

  42. Kalogirou SA, Karellas S, Braimakis K, Stanciu C, Badescu V. Exergy analysis of solar thermal collectors and processes. Prog Energy Combust Sci. 2016;56:106–37.

    Google Scholar 

  43. Vaziri Rad MA, Kasaeian A, Mousavi S, Rajaee F, Kouravand A. Empirical investigation of a photovoltaic-thermal system with phase change materials and aluminum shavings porous media. Renew Energy. 2021;167:662–75.

    Google Scholar 

  44. Dawood MMK, Omar AH, Shehata AI, Samir Shehata A, Taha AA-E, El-Shaib MN, et al. 3E enhancement of freshwater productivity of solar still with heater, vibration, and cover cooling. Environ Sci Pollut Res. 2022;30:1–19.

    Google Scholar 

  45. Sarhaddi F, Farahat S, Ajam H, Behzadmehr A. Exergetic performance assessment of a solar photovoltaic thermal (PV/T) air collector. Energy Build. 2010;42(11):2184–99. https://doi.org/10.1016/j.enbuild.2010.07.011.

    Article  Google Scholar 

  46. Maadi SR, Kolahan A, Passandideh-Fard M, Sardarabadi M, Moloudi R. Characterization of PVT systems equipped with nanofluids-based collector from entropy generation. Energy Convers Manage. 2017;150:515–31.

    CAS  Google Scholar 

  47. Lotfi M, Shiravi AH, Firoozzadeh M. Experimental study on simultaneous use of phase change material and reflector to enhance the performance of photovoltaic modules. J Energy Storage. 2022;54:105342.

    Google Scholar 

  48. Park S, Pandey A, Tyagi V, Tyagi S. Energy and exergy analysis of typical renewable energy systems. Renew Sustain Energy Rev. 2014;30:105–23.

    Google Scholar 

  49. Petela R. Exergy analysis of the solar cylindrical-parabolic cooker. Sol Energy. 2005;79(3):221–33.

    CAS  Google Scholar 

  50. Jeter SM. Maximum conversion efficiency for the utilization of direct solar radiation. Sol Energy. 1981;26(3):231–6.

    Google Scholar 

  51. Spanner DC. Introduction to thermodynamics. Introduction to thermodynamics. 1964.

  52. Petela R. Exergy of heat radiation. 1964.

  53. Yazdanifard F, Ameri M. Exergetic advancement of photovoltaic/thermal systems (PV/T): a review. Renew Sustain Energy Rev. 2018;97:529–53.

    Google Scholar 

  54. Chow TT, Pei G, Fong K, Lin Z, Chan A, Ji J. Energy and exergy analysis of photovoltaic–thermal collector with and without glass cover. Appl Energy. 2009;86(3):310–6.

    Google Scholar 

  55. Assareh E, Jafarian M, Nedaei M, Firoozzadeh M, Lee M. Performance evaluation and optimization of a photovoltaic/thermal (PV/T) system according to climatic conditions. Energies. 2022;15(20):7489.

    Google Scholar 

  56. Stalin PMJ, Arjunan T, Matheswaran M, Dolli H, Sadanandam N. Energy, economic and environmental investigation of a flat plate solar collector with CeO2/water nanofluid. J Therm Anal Calorim. 2020;139(5):3219–33.

    Google Scholar 

  57. Shiravi AH, Firoozzadeh M. Performance assessment of a finned photovoltaic module exposed to an air stream; an experimental study. J Braz Soc Mech Sci Eng. 2022;44(11):535.

    Google Scholar 

  58. Firoozzadeh M, Shiravi AH. Simultaneous use of porous medium and phase change material as coolant of photovoltaic modules thermodynamic analysis. J Energy Storage. 2022;54:105276. https://doi.org/10.1016/j.est.2022.105276.

    Article  Google Scholar 

  59. Moravej M, Saffarian MR, Li LK, Doranehgard MH, Xiong Q. Experimental investigation of circular flat-panel collector performance with spiral pipes. J Therm Anal Calorim. 2019;140(3):1–8.

    Google Scholar 

  60. Al Ezzi A, Chaichan MT, Majdi HS, Al-Waeli AHA, Kazem HA, Sopian K, et al. Nano-iron oxide-ethylene glycol-water nanofluid based photovoltaic thermal (PV/T) system with spiral flow absorber: an energy and exergy analysis. Energies. 2022;15(11):3870.

    CAS  Google Scholar 

  61. Tyagi H, Phelan P, Prasher R. Predicted efficiency of a low-temperature nanofluid-based direct absorption solar collector. J Solar Energy Eng. 2009. https://doi.org/10.1115/1.3197562.

    Article  Google Scholar 

  62. Al-Mashat SMS, Hasan AA. Evaluation of convective heat transfer and natural circulation in an evacuated tube solar collector. J Eng. 2013;19(5):613–28.

    Google Scholar 

  63. He Q, Zeng S, Wang S. Experimental investigation on the efficiency of flat-plate solar collectors with nanofluids. Appl Therm Eng. 2015;88:165–71.

    CAS  Google Scholar 

  64. Sadeghi G, Safarzadeh H, Ameri M. Experimental and numerical investigations on performance of evacuated tube solar collectors with parabolic concentrator, applying synthesized Cu2O/distilled water nanofluid. Energy Sustain Dev. 2019;48:88–106.

    Google Scholar 

  65. Chougule SS, Pise AT, Madane PA, editors. Performance of nanofluid-charged solar water heater by solar tracking system. IEEE-international conference on advances in engineering, science and management (ICAESM-2012); 2012.

  66. Moorthy M, Chui L, Sharma K, Anuar S. Performance evaluation of evacuated tube solar collector using water-based titanium oxide (TiO2) nanofluid. J Mech Eng Sci. 2012;3:301–10.

    Google Scholar 

Download references

Acknowledgements

The research was financially supported by Jundi-Shapur Research Institute, Dezful, Iran. The grant number was 99-1-100-05.

Author information

Authors and Affiliations

Authors

Contributions

MF was contributed to investigation, methodology, writing—original draft, visualization and writing—review and editing. MS was contributed to supervision, funding acquisition, project administration and writing—review and editing.

Corresponding author

Correspondence to Mojtaba Shafiee.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Firoozzadeh, M., Shafiee, M. Thermodynamic analysis on using titanium oxide/oil nanofluid integrated with porous medium in an evacuated tube solar water heater. J Therm Anal Calorim 148, 8309–8322 (2023). https://doi.org/10.1007/s10973-023-11961-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-023-11961-4

Keywords

Navigation