Skip to main content
Log in

The aid of calorimetry for the thermochemical and kinetic study of the σ-hole bonding leading to I2 and 4-(dimethylamino) pyridine complexes in solution

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The thermochemical and kinetic studies of the formation of iodine (I2) and 4-(dimethylamino) pyridine (DMAP) complexes in solution were investigated using microcalorimetry at 25 °C. First, a theoretical approach of the σ-hole bonding leading to these complexes based on the calculation of complexation energy values, Vsmin,max, localization of the molecular orbitals and the amount of charge transfer, was developed. The hexane was chosen as a solvent for both DMAP and I2 solids. The plots of the complexation heats as a function of r1 = [DMAP]/[I2] and r2 = [I2]/[DMAP] ratios (where [DMAP] and [I2] are the concentrations of DMAP and I2, respectively) show that mixing DMAP solution to I2 ones or vice versa has the same tendency but do not lead to the same enthalpies and is not a reciprocal phenomenon. For particular r1 and r2 values, we can suggest complex forms for the reaction between I2 and DMAP by taking into account the measured and calculated complexation energies. The kinetic mechanisms and theoretical heat flow equations have been proposed for the lowest and highest r1 and r2 ratios. Iterating the heat flow equations while considering the deconvoluted curves allows to deduce the kinetic and thermodynamic parameters as: global order, partial order, rate constant, apparent rate constant and complexation enthalpies: for each mechanism, the latter parameter agrees with both the measured and theoretical ones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Scheme 1
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Carter M, Ho PS. Assaying the energies of biological halogen bonds. Cryst Growth Des. 2011;11:5087–95. https://doi.org/10.1021/cg200991v.

    Article  CAS  Google Scholar 

  2. Kolář MH, Deepa P, Ajani H, Pecina A, Hobza P. Characteristics of a σ-hole and the nature of a halogen bond. In: Metrangolo P, Resnati G, editors. Halogen bonding II impact on materials chemistry and life sciences. Topics in current chemistry, vol. 359. Cham: Springer; 2015. p. 1–26. https://doi.org/10.1007/128_2014_606.

    Chapter  Google Scholar 

  3. Desiraju GR, Ho PS, Kloo L, Legon AC, Marquardt R, Metrangolo P, Politzer P, Resnati G, Rissanen K. Definition of the halogen bond (IUPAC recommendations 2013). Pure Appl Chem. 2013;85:1711–3. https://doi.org/10.1351/PAC-REC-12-05-10.

    Article  CAS  Google Scholar 

  4. Clark T, Hennemann M, Murray JS, Politzer P. Halogen bonding: the σ-hole Proceedings of “Modeling interactions in biomolecules II”, Prague, September 5th–9th, 2005. J Mol Model. 2007;13:291–296. https://doi.org/10.1007/s00894-006-0130-2

  5. Politzer P, Murray JS, Clark T. Halogen bonding and other σ-hole interactions: a perspective. Phys Chem Chem Phys. 2013;15:11178–89. https://doi.org/10.1039/c3cp00054k.

    Article  CAS  PubMed  Google Scholar 

  6. Politzer P, Murray JS. Halogen bonding: an interim discussion. Phys Chem Chem Phys. 2013;14:278–94. https://doi.org/10.1002/cphc.201200799.

    Article  CAS  Google Scholar 

  7. Kolář MH, Hobza P. Computer modeling of halogen bonds and other σ-hole interactions. Chem Rev. 2016;116(9):5155–87. https://doi.org/10.1021/acs.chemrev.5b00560.

    Article  CAS  PubMed  Google Scholar 

  8. Raynal M, Ballester P, Vidal-Ferran A, van Leeuwen PWNM. Supramolecular catalysis. Part 1: non-covalent interactions as a tool for building and modifying homogeneous catalysts. Chem Soc Rev. 2014;43:1660–733. https://doi.org/10.1039/C3CS60027K.

    Article  CAS  PubMed  Google Scholar 

  9. Schneider HJ. Binding mechanisms in supramolecular complexes. Angew Chem Int Ed. 2009;48(22):3924–77. https://doi.org/10.1002/anie.200802947.

    Article  CAS  Google Scholar 

  10. Dougherty DA. The Cation-π interaction. Acc Chem Res. 2012;46(4):885–93. https://doi.org/10.1021/ar300265y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Scheiner S. The pnicogen bond: its relation to hydrogen, halogen, and other noncovalent bonds. Acc Chem Res. 2013;46(2):280–8. https://doi.org/10.1021/ar3001316.

    Article  CAS  PubMed  Google Scholar 

  12. Chifotides HT, Dunbar KR. Anion−π interactions in supramolecular architectures. Acc Chem Res. 2013;46(4):894–906. https://doi.org/10.1021/ar300251k.

    Article  CAS  PubMed  Google Scholar 

  13. Priimagi A, Cavallo G, Metrangolo P, Resnati G. The Halogen bond in the design of functional supramolecular materials: recent advances. Acc Chem Res. 2013;46:2686–95. https://doi.org/10.1021/ar400103r.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Wheeler SE, Bloom JWG. Toward a more complete understanding of noncovalent interactions involving aromatic rings. J Phys Chem A. 2014;118:6133–47. https://doi.org/10.1021/jp504415p.

    Article  CAS  PubMed  Google Scholar 

  15. Wagner JP, Schreiner PR. London dispersion in molecular chemistry-reconsidering steric effects. Angew Chem Int Ed. 2015;54:12274–96. https://doi.org/10.1002/anie.201503476.

    Article  CAS  Google Scholar 

  16. Kataev EA. Non‐covalent interactions in the synthesis of macrocycles. In: Maharramov AM, Mahmudov KT, Kopylovich MN, Pombeiro AJL, editors. Non-covalent Interactions in the Synthesis and Design of New Compounds Part I Organic synthesis 1. Chapter 4. New York: Wiley; 2016. Pp. 63–82. https://doi.org/10.1002/9781119113874.ch4.

  17. Mahmudov KT, Kopylovich MN, Guedes da Silva MFC, Pombeiro AJL. Non-covalent interactions in the synthesis of coordination compounds: recent advances. Coord Chem Rev. 2017;345:54–72. https://doi.org/10.1016/j.ccr.2016.09.002.

    Article  CAS  Google Scholar 

  18. Metrangolo P, Resnati G. Halogen bonding: a paradigm in supramolecular chemistry. Chem Eur J. 2001;7(12):2511–9. https://doi.org/10.1002/1521-3765(20010618)7:12%3c2511::AID-CHEM25110%3e3.0.CO;2-T.

    Article  CAS  PubMed  Google Scholar 

  19. Rissanen K. Halogen bonded supramolecular complexes and networks. CrystEngComm. 2008;10:1107–13. https://doi.org/10.1039/B803329N.

    Article  CAS  Google Scholar 

  20. Cavallo G, Metrangolo P, Milani R, Pilati T, Priimagi A, Resnati G, Terraneo G. The Halogen bond. Chem Rev. 2016;116:2478–601. https://doi.org/10.1021/acs.chemrev.5b00484.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Alexander Friedrich A, Jürgen P, Eyselein J, Langer J, Hommes NVE, Görling A, Harder S. Magnesium–halobenzene bonding: mapping the halogen sigma-hole with a Lewis-acidic complex. Chem Sci. 2021;12:2410–8. https://doi.org/10.1039/D0SC06321E.

    Article  Google Scholar 

  22. Mele A, Metrangolo P, Neukirch H, Pilati T, Resnati G. A Halogen-bonding-based heteroditopic receptor for alkali metal halides. J Am Chem Soc. 2005;127:14972–3. https://doi.org/10.1021/ja054862h.

    Article  CAS  PubMed  Google Scholar 

  23. Wilcken R, Zimmermann MO, Lange A, Joerger AC, Boeckler FM. Principles and applications of halogen bonding in medicinal chemistry and chemical biology. J Med Chem. 2013;56:1363–88. https://doi.org/10.1021/jm3012068.

    Article  CAS  PubMed  Google Scholar 

  24. Lu Y, Shi T, Wang Y, Yang H, Yan X, Luo X, Jiang H, Zhu W. Halogen Bonding: a novel interaction for rational drug design? J Med Chem. 2009;52:2854–62. https://doi.org/10.1021/jm9000133.

    Article  CAS  PubMed  Google Scholar 

  25. Xu Z, Liu Z, Chen T, Chen TT, Wang Z, Tian G, Shi J, Wang X, Lu Y, Yan X, Wang G, Jiang H, Chen K, Wang S, Xu Y, Shen J, Zhu W. Utilization of halogen bond in lead optimization: A case study of rational design of potent phosphodiesterase type 5 (PDE5) inhibitors. J Med Chem. 2011;54(15):5607–11. https://doi.org/10.1021/jm200644r.

    Article  CAS  PubMed  Google Scholar 

  26. Tripathi SK, Patel U, Roy D, Sunoj RB, Singh HB, Wolmershäuser G, Butcher RJ. o-Hydroxylmethylphenylchalcogens: synthesis, intramolecular nonbonded Chalcogen···OH interactions, and glutathione peroxidase-like activity. J Org Chem. 2005;70:9237–47. https://doi.org/10.1021/jo051309+.

    Article  CAS  PubMed  Google Scholar 

  27. Benz S, López-Andarias J, Mareda J, Sakai N, Matile S. Catalysis with chalcogen bonds. Angew Chem Int Ed. 2017;56(3):812–5. https://doi.org/10.1002/anie.201611019.

    Article  CAS  Google Scholar 

  28. Breugst M, von der Heiden D, Schmauck J. Novel noncovalent interactions in catalysis: a focus on halogen, chalcogen, and anion-π bonding. Synthesis. 2017;49:3224–36. https://doi.org/10.1055/s-0036-1588838.

    Article  CAS  Google Scholar 

  29. Bruckmann A, Pena MA, Bolm C. Organocatalysis through halogen-bond activation. Synlett. 2008;2008(6):900–2. https://doi.org/10.1055/s-2008-1042935.

    Article  CAS  Google Scholar 

  30. Kniep F, Jungbauer SH, Zhang Q, Walter SM, Schindler S, Schnapperelle I, Herdtweck E, Huber SM. Organocatalysis by neutral multidentate halogen-bond donors. Angew Chem Int Ed. 2013;52(27):7028–32. https://doi.org/10.1002/anie.201301351.

    Article  CAS  Google Scholar 

  31. Yahagi E, Matsumura S, Imai Y, Aida K. Far-i.r. spectra of charge-transfer complexes between IX (X = Cl, Br) and some pyridine and quinoline bases. Spectrochim Acta. 1987;43A(5):711–3. https://doi.org/10.1016/0584-8539(87)80157-5.

    Article  CAS  Google Scholar 

  32. Daisey JM, Sonnessa AJ. A study of the thermodynamic and spectral properties of molecular complexes of iodine with several aminopyridines. J Phys Chem. 1972;76:1895–901. https://doi.org/10.1021/j100657a020.

    Article  CAS  Google Scholar 

  33. Anyfanti G, Bauzá A, Gentiluomo L, Rodrigues J, Portalone G, Frontera A, Rissanen K, Puttreddy R. Short X…N Halogen bonds with hexamethylenetetramine as the acceptor. Front. Chem. 2021;9:623595. https://doi.org/10.3389/fchem.2021.623595.

  34. Rabie UM. Charge transfer molecular complexes of 4-(dimethylamino)pyridine with some conventional and unconventional acceptors involving fluoroarenes. Collect Czech Chem Commun. 2006;71(9):1359–70. https://doi.org/10.1135/cccc20061359.

    Article  CAS  Google Scholar 

  35. Spivey AC, Fekner T, Spey SE. Axially chiral analogues of 4-(dimethylamino)pyridine: novel catalysts for nonenzymatic enantioselective acylations. J Org Chem. 2000;65:3154–9. https://doi.org/10.1021/jo0000574.

    Article  CAS  PubMed  Google Scholar 

  36. Ruble JC, Latham HA, Fu GC. Effective kinetic resolution of secondary alcohols with a planar-chiral analogue of 4-(Dimethylamino)pyridine. Use of the Fe(C5Ph5) group in asymmetric catalysis. J Am Chem Soc. 1997;119(6):1492–3. https://doi.org/10.1021/ja963835b.

    Article  CAS  Google Scholar 

  37. Ruble JC, Tweddell J, Fu GC. Kinetic resolution of arylalkylcarbinols catalyzed by a planar-chiral derivative of DMAP: a New Benchmark for nonenzymatic acylation. J Org Chem. 1998;63(9):2794–5. https://doi.org/10.1021/jo980183w.

    Article  CAS  Google Scholar 

  38. Tao B, Ruble JC, Hoic DA, Fu GC. Nonenzymatic kinetic resolution of propargylic alcohols by a planar−chiral DMAP derivative: crystallographic characterization of the acylated catalyst. J Am Chem Soc. 1999;121(44):5091–2. https://doi.org/10.1021/ja995532y.

    Article  CAS  Google Scholar 

  39. Makhotkina O, Lieffrig J, Jeannin O, Fourmigué M, Aubert E, Espinosa E. Cocrystal or salt: solid state-controlled iodine shift in crystalline halogen-bonded systems. Cryst Growth Des. 2015;15(7):3464–73. https://doi.org/10.1021/acs.cgd.5b00535.

    Article  CAS  Google Scholar 

  40. Moulay S. Molecular iodine/polymer complexes. J Polym Eng. 2013;33(5):389–443. https://doi.org/10.1515/polyeng-2012-0122.

    Article  CAS  Google Scholar 

  41. Punyani S, Narayana P, Singh H, Vasudevan P. Iodine based water disinfection: a review. J Sci Indus Res. 2006;65:116–20.

    CAS  Google Scholar 

  42. Banerjee AK, Vera W, Mora H, Laya MS, Bedoya L, Cabrera EV. Iodine in organic synthesis. J Sci Indus Res. 2006;65:299–308.

    CAS  Google Scholar 

  43. Flachowsky G. Iodine in animal nutrition and iodine transfer from feed into food of animal origin. Lohmann Inf. 2007;42(2):47–59.

    Google Scholar 

  44. Shirman T, Arad T, Van der Boom ME. Halogen bonding: a supramolecular entry of assembling nanoparticles. Angew Chem Int Ed. 2010;49(5):926–9. https://doi.org/10.1002/anie.200905984.

    Article  CAS  Google Scholar 

  45. Li W, Lu B, Sheng A, Yang F, Wang Z. Spectroscopic and theoretical study on inclusion complexation of beta-cyclodextrin with permethrin. J Mol Struct. 2010;981:194–203. https://doi.org/10.1016/j.molstruc.2010.08.008.

    Article  CAS  Google Scholar 

  46. Erdélyi M. Halogen bonding in solution. Chem Soc Rev. 2012;41:3547–57. https://doi.org/10.1039/C2CS15292D.

    Article  PubMed  Google Scholar 

  47. Corradi E, Meille SV, Messina MT, Metrangolo P, Resnati G. Halogen bonding versus hydrogen bonding in driving self-assembly processes. Angew Chem Int Ed. 2000;39(10):1782–6. https://doi.org/10.1002/(sici)1521-3773(20000515)39:10%3c1782::aid-anie1782%3e3.0.co;2-5.

    Article  CAS  Google Scholar 

  48. Carter M, Voth AR, Scholfield MR, Rummel B, Sowers LC, Ho PS. Enthalpy-entropy compensation in biomolecular halogen bonds measured in DNA junctions. Biochemistry. 2013;52(29):4891–903. https://doi.org/10.1021/bi400590h.

    Article  CAS  PubMed  Google Scholar 

  49. Vander Zanden CM, Carter M, Ho PS. Determining thermodynamic properties of molecular interactions from single crystal studies. Methods. 2013;64(1):12–8. https://doi.org/10.1016/j.ymeth.2013.07.039.

    Article  CAS  PubMed  Google Scholar 

  50. Scholfield MR. Measuring energies of a specific biomolecular interaction using DSC. TA Instrum. 2014;1a:1–4.

    Google Scholar 

  51. Brahim K, Khattech I, Dubès JP, Jemal M. Etude cinétique et thermodynamique de la dissolution de la fluarapatite dans l’acide phosphorique. Thermochim Acta. 2005;436:43–50. https://doi.org/10.1016/j.tca.2005.06.019.

    Article  CAS  Google Scholar 

  52. Antar K, Jemal M. Kinetics and thermodynamics of the attack of fluorapatite by a mixture of sulfuric and phosphoric acids at 55 °C. Thermochim Acta. 2007;452:71–5. https://doi.org/10.1016/j.tca.2006.09.019.

    Article  CAS  Google Scholar 

  53. Antar K, Jemal M. Kinetics and thermodynamics of the attack of a phosphate ore by acid solutions at different temperatures. Thermochim Acta. 2008;474:32–5. https://doi.org/10.1016/j.tca.2008.05.006.

    Article  CAS  Google Scholar 

  54. Fertani-Gmati M, Brahim K, Khattech I, Jemal M. Thermochemistry and kinetics of silica dissolution in NaOH solutions: effect of the alkali concentration. Thermochim Acta. 2014;594:58–67. https://doi.org/10.1016/j.tca.2014.09.003.

    Article  CAS  Google Scholar 

  55. Brahim K, Rouissi K, Soussi-Baatout A, Khattech I. Thermochemistry and kinetics of the aspect of diammonium hydrogen phosphate precipitation in phosphoric acid solution. J Therm Anal Calorim. 2021;143:3173–9. https://doi.org/10.1007/s10973-020-09399-z.

    Article  CAS  Google Scholar 

  56. Gaussian 09, Revision A.02, Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Petersson GA, Nakatsuji H, Li X, Caricato M, Marenich A, Bloino J, Janesko BG, Gomperts R, Mennucci B, Hratchian HP, Ortiz JV, Izmaylov AF, Sonnenberg JL, Williams-Young D, Ding F, Lipparini F, Egidi F, Goings J, Peng B, Petrone A, Henderson T, Ranasinghe D, Zakrzewski VG, Gao J, Rega N, Zheng G, Liang W, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Throssell K, Montgomery JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Keith T, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Millam JM, Klene M, Adamo C, Cammi R, Ochterski JW, Martin RL, Morokuma K, Farkas O, Foresman JB, Fox DJ. Gaussian, Inc., Wallingford CT, 2016.

  57. Hohenberg P, Kohn W. Inhomogeneous electron gas. Phys Rev. 1964;136(3B):864–71. https://doi.org/10.1103/PhysRev.136.B864.

    Article  Google Scholar 

  58. Kohn W, Sham LJ. Self-consistent equations including exchange and correlation effects. Phys Rev. 1965;140(4A):1133–8. https://doi.org/10.1103/PhysRev.140.A1133.

    Article  Google Scholar 

  59. Jones RO, Gunnarsson O. The density functional formalism, its applications and prospects. Rev Mod Phys. 1989;61(3):689–746. https://doi.org/10.1103/RevModPhys.61.689.

    Article  CAS  Google Scholar 

  60. Becke AD. Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys. 1993;98(7):5648–52. https://doi.org/10.1063/1.464913.

    Article  CAS  Google Scholar 

  61. Omrani R, Zouaghi MO, Arfaoui Y. Mechanistic density functional theory study of the Claisen Rearrangement Diels-Alder Cycloaddition domino sequence for the synthesis of the caged garcinia xanthone. J Mol Struct. 2020;1202:127305. https://doi.org/10.1016/j.molstruc.2019.127305.

    Article  CAS  Google Scholar 

  62. Chiodo S, Russo N, Sicilia E. LANL2DZ basis sets recontracted in the framework of density functional theory. J Chem Phys. 2006;125(104107):1–8. https://doi.org/10.1063/1.2345197.

    Article  CAS  Google Scholar 

  63. Kobko N, Dannenberg JJ. Effect of basis set superposition error (BSSE) upon ab initio calculations of organic transition states. J Phys Chem A. 2001;105(10):1944–50. https://doi.org/10.1021/jp001970b.

    Article  CAS  Google Scholar 

  64. Campanario JM, Bronchalo E, Hidalgo MA. An effective approach for teaching intermolecular interactions. J Chem Educ. 1994;71(9):761–6. https://doi.org/10.1021/ed071p761.

    Article  CAS  Google Scholar 

  65. Gara R, Zouaghi MO, Alshandoudi LMH, Arfaoui Y. DFT investigation of solvent, substituent, and catalysis effects on the intramolecular Diels-Alder reaction. J Mol Model. 2021;27(5):125. https://doi.org/10.1007/s00894-021-04729-w.

    Article  CAS  PubMed  Google Scholar 

  66. Glendening ED, Reed AE, Carpenter JA, Weinhold F. NBO Version 3.1.

  67. Zouaghi MO, Doggui MY, Arfaoui Y. Regio- and stereoselectivity of the [3+2] cycloaddition of nitrones with methyl-acetophenone: a DFT investigation. J Mol Graph Model. 2021;107(2):107960. https://doi.org/10.1016/j.jmgm.2021.107960.

    Article  CAS  PubMed  Google Scholar 

  68. Hill JO, Öjelund G, Wadsö I. Thermochemical results for “tris”as a test substance in solution calorimetry. J Chem Thermodyn. 1969;1(1):111–6. https://doi.org/10.1016/0021-9614(69)90041-X.

    Article  CAS  Google Scholar 

  69. Vanderzee CE, Waugh DH, Haas NC, Wigg D. The standard enthalpy of solution of NH4NO3 (c, IV) in water at 298.15 K. (A search for the standard thermodynamic state). J Chem Thermodyn. 1980;12(1):27–40. https://doi.org/10.1016/0021-9614(80)90112-3.

    Article  CAS  Google Scholar 

  70. Nichols N, Skold R, Wadso I. Testing of an automatic temperature recording system for an isoperibolic solution calorimeter. Chem Scr. 1976;9(3):110–3.

    CAS  Google Scholar 

  71. Metranglo P, Resnati G. Halogen bonging I impact on materials chemistry and life sciences. Berlin: Springer; 2015. https://doi.org/10.1007/978-3-319-14057-5.

    Book  Google Scholar 

  72. Ben Aissa MA, Hassen S, Arfaoui Y. Theoretical Density Functional Theory insights into the nature of chalcogen bonding between CX2 (X = S, Se, Te) and diazine from monomer to supramolecular complexes. Int J Quantum Chem. 2019;119(6):e25837. https://doi.org/10.1002/qua.25837.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kaїs Antar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Antar, K., Wacharine, S., Zouaghi, M.O. et al. The aid of calorimetry for the thermochemical and kinetic study of the σ-hole bonding leading to I2 and 4-(dimethylamino) pyridine complexes in solution. J Therm Anal Calorim 148, 3887–3901 (2023). https://doi.org/10.1007/s10973-023-11956-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-023-11956-1

Keywords

Navigation