Skip to main content
Log in

A study of zinc silicate phases produced via a simplified method

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Silica hydrogel derived from serpentine minerals was first used for the preparation of intermediate systems from the mixture composed of different SiO2/ZnO molar ratios via adapting a simple precipitation method previously developed. The effects of both stirring time and sintering temperature variation on the evolution and morphology of zinc silicate phases in those systems were examined by thermal analysis, X-ray diffraction study, scanning electron microscopy, energy-dispersive spectroscopy and Fourier transform infrared spectroscopy. Whatever the initial parameters are, well-crystallized α-Zn2SiO4 transformed from β-Zn2SiO4 exists at 900 °C. In the systems with the stoichiometric proportion of the initial reagents, the transformation of β-Zn2SiO4 into α-Zn2SiO4 starts at about 700 °C. In the ones wherein the content of SiO2 is a little greater (SiO2/ZnO 2:2) than that required, the stirring time extended up to 120 min decreases the temperature of α-Zn2SiO4 crystallization up to such lower values as 600 °C. The subsequent increase of SiO2 portion (SiO2/ZnO 3:2 and 4:2) promotes both the formation of β-Zn2SiO4 single phase distinguished by thermal stability up to 800 °C including and a product composed of α-Zn2SiO4 and cristobalite above 800 °C. α-Zn2SiO4 crystallites sizes variable from 57 up to 92 nm can be manipulated by stirring time. The increase of SiO2 excess substantially reduces the size of β-Zn2SiO4 particles from 60 up to 10 nm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Notes

  1. Serpentinite is a rock largely composed of serpentine group minerals (Mg(Fe))6[Si4O10](OH)8.

References

  1. Zulumyan NO, Isaakyan AR, Oganesyan ZG. A new promising method for processing of serpentinites. Russ J Appl Chem. 2007;80(6):1020–2. https://doi.org/10.1134/S1070427207060353.

    Article  CAS  Google Scholar 

  2. Zulumyan N, Mirgorodski A, Isahakyan A, Beglaryan H. The mechanism of decomposition of serpentines from peridotites on heating. J Therm Anal Calorim. 2014;115(2):1003–12. https://doi.org/10.1007/s10973-013-3483-7.

    Article  CAS  Google Scholar 

  3. Zulumyan N, Isahakyan A, Beglaryan H, Melikyan S. A study of thermal decomposition of antigorite from dunite and lizardite from peridotite. J Therm Anal Calorim. 2018;131(2):1201–11. https://doi.org/10.1007/s10973-017-6705-6.

    Article  CAS  Google Scholar 

  4. Zulumyan NO, Isaakyan AR, Pirumyan PA, Beglaryan AA. The structural characteristics of amorphous silicas. Russ J Phys Chem A. 2010;84(4):700–2. https://doi.org/10.1134/S003602441004031X.

    Article  CAS  Google Scholar 

  5. Isahakyan AR, Beglaryan HA, Pirumyan PA, Papakhchyan LR, Zulumyan NH. An IR spectroscopic study of amorphous silicas. Russ J Phys Chem A. 2011;85(1):72–5. https://doi.org/10.1134/S0036024410121015.

    Article  CAS  Google Scholar 

  6. Zulumyan N, Isahakyan A, Beglaryan H, Melikyan S. The Influence of NaOH on the synthesis of calcium silicates. JIOPM. 2017;27(5):1323–32. https://doi.org/10.1007/s10904-017-0586-9.

    Article  CAS  Google Scholar 

  7. Zulumyan N, Isahakyan A, Beglaryan H, Melikyan S, Terzyan A. The development of a new route to the synthesis of strontium orthosilicate. J Therm Anal Calorim. 2019;137(4):1471–81. https://doi.org/10.1007/s10973-019-08035-9.

    Article  CAS  Google Scholar 

  8. Beglaryan HA, Melikyan SA, Zulumyan NH, Terzyan AM, Isahakyan AR. Influence of colloid synthesis techniques on barium silicates formation using silica hydrogel derived from serpentine minerals. J Mol Liq. 2019;291:111263. https://doi.org/10.1016/j.molliq.2019.111263.

    Article  CAS  Google Scholar 

  9. Raju MK, Srinath P, Samudrala RK, Azeem PA. Facile green synthesis for the formation of β-wollastonite from agro-food-waste materials. SILICON. 2022. https://doi.org/10.1007/s12633-022-01909-y.

    Article  Google Scholar 

  10. Shamsudin R, Abdul Azam F, Abdul Hamid MA, Ismail H. Bioactivity and cell compatibility of β-wollastonite derived from rice husk ash and limestone. Materials (Basel). 2017;10:10. https://doi.org/10.3390/ma10101188.

    Article  CAS  Google Scholar 

  11. Nishad KV, Komath M, Unnikrishnan G. Synthesis of strontium orthosilicate (Sr2SiO4) by sol-gel method for the use in endodontic cements to enhance bioactivity and radio-contrast. Mater Res Express. 2019;6(10):105401. https://doi.org/10.1088/2053-1591/ab34ff.

    Article  CAS  Google Scholar 

  12. Koppala S, Lokesh B, Balan R, Punalur John S, Harathi J, Munusamy S, et al. A simple energy efficient sol-gel combustion production of strontium orthosilicate and its biomedical study. Mater Sci Energy Technol. 2022;5:366–74. https://doi.org/10.1016/j.mset.2022.09.003.

    Article  CAS  Google Scholar 

  13. Yang L, Zhu D-c, Liu S, Wang J-s, Zhao C, Pu Y. Photoluminescence properties and crystal structure of BaSiO3:xEu3+, yBi3+ red phosphor synthesized by co-precipitation method. Phys B Condens Matter. 2019;556:6–11. https://doi.org/10.1016/j.physb.2018.12.022.

    Article  CAS  Google Scholar 

  14. Grigorie AC, Muntean C, Vlase T, Locovei C, Stefanescu M. ZnO-SiO2 based nanocomposites prepared by a modified sol-gel method. Mater Chem Phys. 2017;186:399–406. https://doi.org/10.1016/j.matchemphys.2016.11.011.

    Article  CAS  Google Scholar 

  15. Mohd Zaid MH, Amin Matori K, Abdul Aziz SH, Kamari HM, Mat Yunus WM, Abdul Wahab Z, et al. Fabrication and crystallization of ZnO-SLS glass derived willemite glass-ceramics as a potential material for optics applications. J Spectrosc. 2016;2016:8084301. https://doi.org/10.1155/2016/8084301.

    Article  Google Scholar 

  16. Qadri SB, Gorzkowski EP, Rath BB, Feng CR, Amarasinghe R, Freitas JA, et al. Nanoscale zinc silicate from phytoliths. J Cryst Growth. 2017;476:25–30. https://doi.org/10.1016/j.jcrysgro.2017.08.015.

    Article  CAS  Google Scholar 

  17. Engku Ali EAG, Matori K, Saion E, Mohd Zaid M, Alibe I, Aziz S. Structural and optical properties of heat treated Zn2SiO4 composite prepared by impregnation of ZnO on SiO2 amorphous nanoparticles. ASM Sci J. 2018;11:75–85.

    Google Scholar 

  18. Alibe IM, Matori KA, Sidek HAA, Yaakob Y, Rashid U, Alibe AM, et al. Effects of calcination holding time on properties of wide band gap Willemite semiconductor nanoparticles by the polymer thermal treatment method. Molecules. 2018;23(4):873.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Wahab SAA, Matori KA, Zaid MHM, Awang Kechik MM, Hj Ab Aziz S, Talib RA, et al. A study on optical properties of zinc silicate glass-ceramics as a host for green phosphor. Appl Sci. 2020;10(14):4938.

    Article  Google Scholar 

  20. Baghramyan VV, Sargsyan AA, Knyzyan NB, Harutyunyan VV, Badalyan AH, Grigoryan NE, et al. Pure and cerium-doped zinc orthosilicate as a pigment for thermoregulating coatings. Ceram Int. 2020;46(4):4992–7. https://doi.org/10.1016/j.ceramint.2019.10.239.

    Article  CAS  Google Scholar 

  21. Jaafar SH, Zaid MHM, Matori KA, Aziz SHA, Mohamed Kamari H, Honda S, et al. Influence of calcination temperature on crystal growth and optical characteristics of Eu3+ Doped ZnO/Zn2SiO4 composites fabricated via simple thermal treatment method. Crystals. 2021;11(2):115.

    Article  CAS  Google Scholar 

  22. Effendy N, Abdul Wahab Z, Mohamed Kamari H, Matori KA, Hj. Ab Aziz S, Zaid MHM. Structural and optical properties of Er3+-doped willemite glass-ceramics from waste materials. Optik. 2016;127(24):11698–705. https://doi.org/10.1016/j.ijleo.2016.09.078.

    Article  CAS  Google Scholar 

  23. Auwalu IA, Halimah MK, Zaidan AW, Chan KT, Abdullahi U. Structural and thermal diffusivity of Sm3+ doped willemite glass ceramics system from waste materials. Solid State Phenom. 2017;268:117–23. https://doi.org/10.4028/www.scientific.net/SSP.268.117.

    Article  Google Scholar 

  24. Ibreva T, Dimitrov T, Titorenkova R, Markovska I, Tacheva E, Petrov O. Synthesis and characterization of willemite ceramic pigments in the system xCoO.(2–x) ZnO. SiO2. Bulg Chem Commun. 2018;50:31–7.

    Google Scholar 

  25. Markovska I, Dimitrov T, Ibreva T. (2019) Synthesis and characterization of willemite ceramic pigments suitable for the ceramic industry by utilization of rice Husk Ash. J Chem, Biol Phys Sci 229–42.

  26. Zaid MHM, Matori KA, Ab Aziz SH, Kamari HM, Fen YW, Yaakob Y, et al. Effect of heat treatment temperature to the crystal growth and optical performance of Mn3O4 doped α-Zn2SiO4 based glass-ceramics. Results Phys. 2019;15:102569. https://doi.org/10.1016/j.rinp.2019.102569.

    Article  Google Scholar 

  27. El Ghoul J, Abdel AN. Synthesis and characterization of Mn+2-doped zinc silicate as potential green nanophosphor materials. Indian J Phys. 2020;94(9):1343–50. https://doi.org/10.1007/s12648-019-01582-9.

    Article  CAS  Google Scholar 

  28. Bharti DK, Verma K, Srivastava AK, Gupta MK. The effect of Co-doping on dielectric properties and bandgap of zinc silicate nanowires. J Appl Phys. 2020;127(8):085104. https://doi.org/10.1063/1.5121616.

    Article  CAS  Google Scholar 

  29. Zamratul MIM, Zaidan WA, Khamirul AM, Halim SA, Raba’ah SA, Nurzilla M, et al. Eco-friendly synthesis of neodymium doped zinc silicate phosphor based waste glass ceramic: structural, thermal and luminescence properties. J Mater Sci Mater Electron. 2017;28(13):9395–402. https://doi.org/10.1007/s10854-017-6680-5.

    Article  CAS  Google Scholar 

  30. Valais I, Michail C, Fountzoula C, Fountos G, Saatsakis G, Karabotsos A, et al. Polymer based thin film screen preparation technique. J Phys Conf Ser. 2017;931:012035. https://doi.org/10.1088/1742-6596/931/1/012035.

    Article  CAS  Google Scholar 

  31. Xu R, He T, Yang R, Da Y, Chen C. Application zinc silicate-potassium silicate coating for anticorrosion of steel bar in autoclaved aerated concrete. Constr Build Mater. 2020;237:117521. https://doi.org/10.1016/j.conbuildmat.2019.117521.

    Article  CAS  Google Scholar 

  32. Szwagierczak D, Synkiewicz-Musialska B, Kulawik J, Pałka N. LTCC and bulk Zn4B6O13–Zn2SiO4 composites for submillimeter wave applications. Materials. 2021;14(4):1014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Dai P, Sun Y-Q, Bao Z-W, Zhu J, Wu M-Z. Optical and adsorption properties of mesoporous SiO2/Zn2SiO4:Eu3+ hollow nanospheres. Micro Nano Lett. 2017;12(4):248–51. https://doi.org/10.1049/mnl.2016.0474.

    Article  CAS  Google Scholar 

  34. Rivera-Enríquez CE, Fernández-Osorio A, Chávez-Fernández J. Luminescence properties of α- and β-Zn2SiO4: Mn nanoparticles prepared by a co-precipitation method. J Alloys Compd. 2016;688:775–82. https://doi.org/10.1016/j.jallcom.2016.07.266.

    Article  CAS  Google Scholar 

  35. Samigullina RF, Krasnenko TI. Thermal analysis and mechanism of formation of Zn2SiO4: Mn phosphor under heating of synthetic hemimorphite. Mater Res Bull. 2020;129:110890. https://doi.org/10.1016/j.materresbull.2020.110890.

    Article  CAS  Google Scholar 

  36. Kirschenbaum H. The classical chemical analysis of silicate rocks: the old and the new Washington. U.S Geological Survey Bulletin; 1983. p. 1547.

    Google Scholar 

  37. Langford JI, Wilson AJC. Scherrer after sixty years: a survey and some new results in the determination of crystallite size. J Appl Crystallogr. 1978;11(2):102–13. https://doi.org/10.1107/S0021889878012844.

    Article  CAS  Google Scholar 

  38. Gorodylova N, Cousy S, Šulcová P, Svoboda L. Thermal transformation of layered zinc hydroxide chloride. J Therm Anal Calorim. 2017;127(1):675–83. https://doi.org/10.1007/s10973-016-5517-4.

    Article  CAS  Google Scholar 

  39. Nagata H, Matsunaga M, Hosokawa K. Analytical study of the formation process of Hemimorphite-part I Analysis of the crystallization process by the co-precipitation method. Zairyo-to-Kankyo. 1993;42(4):225–33. https://doi.org/10.3323/jcorr1991.42.225.

    Article  CAS  Google Scholar 

  40. Bekturganov N, Bissengaliyeva M, Gogol D. Calculation of vibrational spectra and thermodynamic functions of a natural zinc silicate-Willemite. Eurasian Chem Technol J. 2013;15(3):227–32.

    Article  CAS  Google Scholar 

  41. Nyguist R, Kagel R. Infrared spectra of inorganic compounds. Acad Press; 1971. p. 95.

    Google Scholar 

Download references

Acknowledgements

The work was supported by the Science Committee of RA, in the frames of the research projects No. 21SCG-1D013 and No. 21T-1D131. The authors express their gratitude to their colleagues from the Institute of Chemical Physics after A.B. Nalbandyan who assisted with the FTIR, SEM and EDS measurements.

Author information

Authors and Affiliations

Authors

Contributions

HB was involved in project administration, validation, software, formal analysis and resources. AI helped in conceptualization, data curation, writing—original draft preparation, writing—reviewing and editing. NZ contributed to supervision. SM was involved in investigation. AT helped in investigation and methodology.

Corresponding author

Correspondence to Anna Isahakyan.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Beglaryan, H., Isahakyan, A., Zulumyan, N. et al. A study of zinc silicate phases produced via a simplified method. J Therm Anal Calorim 148, 3249–3262 (2023). https://doi.org/10.1007/s10973-023-11949-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-023-11949-0

Keywords

Navigation