Skip to main content
Log in

Effect of graphite on tribological and mechanical properties of PA6/5GF composites

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Polyamide 6 (PA6)-based composite materials have shown attractive mechanical properties for structural applications. However, their tribological properties have not been much improved till date. Therefore, influence of graphite (Grt) with variation of 1, 3, and 5 mass% on the mechanical and tribological behaviours of 5 mass% glass fibre (GF)-reinforced injection moulded PA6 composites has been studied. This study describes the fabrication and experimental evaluation of Grt-reinforced PA6/GF composites (e.g., PA6/5GF/1Grt, PA6/5GF/3Grt, and PA6/5GF/5Grt). The coefficient of friction (COF) and dry wear properties were evaluated under ambient conditions at variable rotating speeds of 200, 400 and 800 rpm, and normal loads of 10, 20 and 30 N for a fixed run-time of 30 min. SEM and optical microscopy revealed the morphology and wear mechanisms of worn surfaces. Among all the developed composites, 1 mass% of graphite-reinforced PA6/5GF composite had shown noticeably enhanced the tribological (0.20–0.26 COF) and mechanical (45 MPa tensile strength and HRB 47 hardness) characteristics compared to pure PA6, other prepared composites and also some other reported similar composite systems. The thermogravimetric analysis revealed that the optimal thermal stability can be achieved by PA6/5GF/1Grt composite, which, thus, can be used for further applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Unal H, Mimaroglu A. Friction and wear performance of polyamide 6 and graphite and wax polyamide 6 composites under dry sliding conditions. Wear. 2012;289:132–7.

    Article  CAS  Google Scholar 

  2. Kim S, Cho SY, Son K, Attia NF, Oh H. A metal-doped flexible porous carbon cloth for enhanced CO2/CH4 separation. Sep Purif Technol. 2021;277:119511.

    Article  CAS  Google Scholar 

  3. Attia NF, Hady KA, Elashery SE, Hashem H, Oh H, Refaat A, et al. Greener synthesis route and characterization of smart hybrid graphene based thin films. Surf Interfaces. 2020;21:100681.

    Article  CAS  Google Scholar 

  4. Kar KK, Pramanik S. Hydroxyapatite poly (etheretherketone) nanocomposites and method of manufacturing same. US Patents; US Patent 8,652,373; 2014. p. Issued February 18, 2014.

  5. Satheeskumar S, Kanagaraj G. Experimental investigation on tribological behaviours of PA6, PA6-reinforced Al2O3 and PA6-reinforced graphite polymer composites. Bull Mater Sci. 2016;39(6):1467–81.

    Article  CAS  Google Scholar 

  6. Nuruzzaman DM, Rahaman ML, Chowdhury MA. Friction coefficient and wear rate of polymer and composite materials at different sliding speeds. Int J Surf Sci Eng. 2012;6(3):231–45.

    Article  CAS  Google Scholar 

  7. Suresha B, Kumar BR, Venkataramareddy M, Jayaraju T. Role of micro/nano fillers on mechanical and tribological properties of polyamide66/polypropylene composites. Mater Des. 2010;31(4):1993–2000.

    Article  CAS  Google Scholar 

  8. Chowdhury M, Nuruzzaman D, Roy B, Samad S. Experimental investigation of friction coefficient and wear rate of composite materials sliding against smooth and rough mild steel counterfaces. Tribol Ind. 2013;35(4):286.

    Google Scholar 

  9. Stokes V, Inzinna L, Liang E, Trantina G, Woods J. A phenomenological study of the mechanical properties of long-fiber filled injection-molded thermoplastic composites. Polym Compos. 2000;21(5):696–710.

    Article  CAS  Google Scholar 

  10. Li D-X, You Y-L, Deng X, Li W-J, Xie Y. Tribological properties of solid lubricants filled glass fiber reinforced polyamide 6 composites. Mater Des. 2013;46:809–15.

    Article  CAS  Google Scholar 

  11. Palabiyik M, Bahadur S. Mechanical and tribological properties of polyamide 6 and high density polyethylene polyblends with and without compatibilizer. Wear. 2000;246(1–2):149–58.

    Article  CAS  Google Scholar 

  12. Attia NF. Sustainable and efficient flame retardant materials for achieving high fire safety for polystyrene composites. J Therm Anal Calorim. 2022;147(10):5733–42.

    Article  CAS  Google Scholar 

  13. Attia NF, Elashery SE, Zakria AM, Eltaweil AS, Oh H. Recent advances in graphene sheets as new generation of flame retardant materials. Mater Sci Eng, B. 2021;274:115460.

    Article  CAS  Google Scholar 

  14. Suresha B, Seetharamu S, Kumaran PS. Investigations on the influence of graphite filler on dry sliding wear and abrasive wear behaviour of carbon fabric reinforced epoxy composites. Wear. 2009;267(9–10):1405–14.

    Article  CAS  Google Scholar 

  15. Kalaitzidou K, Fukushima H, Drzal LT. A new compounding method for exfoliated graphite–polypropylene nanocomposites with enhanced flexural properties and lower percolation threshold. Compos Sci Technol. 2007;67(10):2045–51.

    Article  CAS  Google Scholar 

  16. Braga R, Magalhaes P Jr. Analysis of the mechanical and thermal properties of jute and glass fiber as reinforcement epoxy hybrid composites. Mater Sci Eng, C. 2015;56:269–73.

    Article  CAS  Google Scholar 

  17. Zhou S, Zhang Q, Wu C, Huang J. Effect of carbon fiber reinforcement on the mechanical and tribological properties of polyamide6/polyphenylene sulfide composites. Mater Des. 2013;44:493–9.

    Article  CAS  Google Scholar 

  18. Unal H, Kaya UA, Esmer K, Mimaroglu A, Poyraz B. Influence of wax content on the electrical, thermal and tribological behaviour of a polyamide 6/graphite composite. J Polym Eng. 2016;36(3):279–86.

    Article  CAS  Google Scholar 

  19. Li M, Wan Y, Gao Z, Xiong G, Wang X, Wan C, et al. Preparation and properties of polyamide 6 thermal conductive composites reinforced with fibers. Mater Des. 2013;51:257–61.

    Article  CAS  Google Scholar 

  20. Demir Z. Tribological performance of polymer composites used in electrical engineering applications. Bull Mater Sci. 2013;36(2):341–4.

    Article  CAS  Google Scholar 

  21. Fasahat F, Dastjerdi R, Mojtahedi M, Hoseini P. Wear properties of high speed spun multi-component PA6 nanocomposite fabrics; abrasion resistance mechanism of nanocomposites. Wear. 2015;322:117–25.

    Article  Google Scholar 

  22. Gong L, Yin B, Li LP, Yang MB. Nylon-6/Graphene composites modified through polymeric modification of graphene. Compos Part B: Eng. 2015;73:49–56.

  23. Harichandra B, Prashanth M, Prakash S, editors. Evaluation of fatigue properties of EN31 steel heat treated using biodegradable gingili oil. IOP conference series: Mater Sci Eng. 2016;149:012155.

  24. Hirsch P, Bastick S, Jaeschke P, van den Aker R, Geyer A, Zscheyge M, et al. Effect of thermal properties on laser cutting of continuous glass and carbon fiber-reinforced polyamide 6 composites. Mach Sci Technol. 2019;23(1):1–18.

    Article  CAS  Google Scholar 

  25. Sathees Kumar S, Kanagaraj G. Investigation on mechanical and tribological behaviors of PA6 and graphite-reinforced PA6 polymer composites. Arab J Sci Eng. 2016;41(11):4347–57.

    Article  CAS  Google Scholar 

  26. Watanabe M, Yamaguchi H. The friction and wear properties of nylon. Wear. 1986;110(3–4):379–88.

    Article  CAS  Google Scholar 

  27. Karsli NG, Yilmaz T, Gul O. Effects of coupling agent addition on the adhesive wear, frictional and thermal properties of glass fiber-reinforced polyamide 6, 6 composites. Polym Bull. 2018;75(10):4429–44.

    Article  CAS  Google Scholar 

  28. Randhawa KS, Patel AD, editors. Tribological behaviour of PA6/diborontrioxide composites. J Phys: conference series. 2020;1706(1):012124.

  29. Kumar KS, Reddy AC. Investigation on mechanical properties and wear performance of Nylon-6/Boron Nitride polymer composites by using Taguchi technique. Results in Materials. 2020;5:100070.

    Article  Google Scholar 

  30. Kumar S, Panneerselvam K. Two-body abrasive wear behavior of nylon 6 and glass fiber reinforced (GFR) nylon 6 composite. Procedia Technol. 2016;25:1129–36.

    Article  Google Scholar 

  31. Li D-X, Deng X, Wang J, Yang J, Li X. Mechanical and tribological properties of polyamide 6–polyurethane block copolymer reinforced with short glass fibers. Wear. 2010;269(3–4):262–8.

    Article  CAS  Google Scholar 

  32. Li X, Chen M, Huang Y, Cong G. Polypropylene/polyamide 6 in situ composite. Polym J. 1997;29(12):975–82.

    Article  CAS  Google Scholar 

  33. Umar M, Ofem MI, Anwar AS, Salisu AG. Modelling of mechanical properties of Pa6 based reinforced graphite and graphite nano platelets composites using different aspect ratio. J Eng, Des Technol. 2021;19(4):809–27.

    Google Scholar 

  34. Moreno-Maldonado V, Acosta-Torres L, Barceló-Santana F, Vanegas-Lancón R, Plata-Rodríguez M, Castano V. Fiber-reinforced nanopigmented poly (methyl methacrylate) as improved denture base. J Appl Polym Sci. 2012;126(1):289–96.

    Article  CAS  Google Scholar 

  35. Stachewicz U, Hang F, Bailey RJ, Gupta HS, Frogley MD, Cinque G et al. Recording IR spectra for individual electrospun fibers using an in situ AFM-synchrotron technique. MRS online proceedings library (OPL). 2012;1424.

  36. Luo L, Peng T, Yuan M, Sun H, Dai S, Wang L. Preparation of graphite oxide containing different oxygen-containing functional groups and the study of ammonia gas sensitivity. Sensors. 2018;18(11):3745.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Farias-Aguilar JC, Ramírez-Moreno MJ, Téllez-Jurado L, Balmori-Ramírez H. Low pressure and low temperature synthesis of polyamide-6 (PA6) using Na0 as catalyst. Mater Lett. 2014;136:388–92.

    Article  CAS  Google Scholar 

  38. Majka TM, Cokot M, Pielichowski K. Studies on the thermal properties and flammability of polyamide 6 nanocomposites surface-modified via layer-by-layer deposition of chitosan and montmorillonite. J Therm Anal Calorim. 2018;131(1):405–16.

    Article  CAS  Google Scholar 

  39. Dahiya J, Rathi S, Bockhorn H, Haußmann M, Kandola B. The combined effect of organic phoshphinate/ammonium polyphosphate and pentaerythritol on thermal and fire properties of polyamide 6-clay nanocomposites. Polym Degrad Stab. 2012;97(8):1458–65.

    Article  CAS  Google Scholar 

  40. Siburian R, Sihotang H, Raja SL, Supeno M, Simanjuntak C. New route to synthesize of graphene nano sheets. Orient J Chem. 2018;34(1):182.

    Article  CAS  Google Scholar 

  41. Attia NF, Afifi HA, Hassan MA. Synergistic study of carbon nanotubes, rice husk ash and flame retardant materials on the flammability of polystyrene nanocomposites. Mater Today: Proc. 2015;2(7):3998–4005.

    Google Scholar 

  42. Kumar SS, Kanagaraj G. Effect of graphite and silicon carbide fillers on mechanical properties of PA6 polymer composites. J Polym Eng. 2017;37(6):547–57.

    Article  Google Scholar 

  43. Uhl FM, Yao Q, Nakajima H, Manias E, Wilkie CA. Expandable graphite/polyamide-6 nanocomposites. Polym Degrad Stab. 2005;89(1):70–84.

    Article  CAS  Google Scholar 

  44. Chen YF, Zhang T, Tang M, Xie D, Long Q, Li CY. The effect of high-current pulsed electron beam modification on the surface wetting property of polyamide 6. e-Polymers. 2017;17(1):23–9.

Download references

Acknowledgements

The author would like to thank Tribology and Surface Interaction Research Laboratory, SRM Institute of Science and Technology, for allowing to conduct the tribology test and Department of Physic and Nanotechnology, SRM Institute of Science and Technology, for allowing to carry out other analytical studies.

Author information

Authors and Affiliations

Authors

Contributions

The experiments were carried by K.V.; S.B. and S.P. planned and supervised the project, as well as provided all of the necessary resources. The manuscript was written by K.V. and S.P. The data were interpreted and the entire text was reviewed by all authors.

Corresponding author

Correspondence to Sumit Pramanik.

Ethics declarations

Conflict of interest

Authors do not have any conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vikram, K., Bhaumik, S. & Pramanik, S. Effect of graphite on tribological and mechanical properties of PA6/5GF composites. J Therm Anal Calorim 148, 3341–3355 (2023). https://doi.org/10.1007/s10973-022-11939-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-022-11939-8

Keywords

Navigation