Skip to main content
Log in

Multi-framework-based approach for optimizing dwelling conditions and energy efficiency in subtropical climatic conditions

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Buildings sector being responsible for more than one-third of the overall energy consumption is growing rapidly. One of the top priorities of building designers is to minimize energy consumption. This communication presents a multi-framework-based approach to optimize dwelling conditions and energy efficiency in subtropical climatic conditions. In the present work, the thermal behavior of indoor air is assessed by using Ansys Workbench while the Grasshopper plugin of Rhinoceros 3D is used to evaluate the daylighting under different scenarios. The study also involves a survey with a sample size of 289 people to substantiate the various optimization strategies. Further, the work encompasses the validation of respective approaches by comparing the results with measured values. Based on the results, it has been observed that using a ceiling fan and air conditioner alongside during the summer season in subtropical climatic conditions provides better dwelling conditions and reduces cooling load by 20–30% in comparison with an air conditioner alone. While consciously utilizing daylight by ensuring minimal illuminance of 500 lx is having the ability to decrease the lighting load by approximately 27%. Further, the results obtained from the present investigation can serve as a basis for providing better dwelling conditions with optimized energy utilization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Abbreviations

3-D:

Three dimensional

AC:

Air conditioner

ASHRAE:

American society of heating, refrigerating and air-conditioning engineers

CBE:

Centre of Built environment

CFAC:

Ceiling fan & air conditioner

CFD:

Computational fluid dynamics

CV-RMSE:

Coefficient variation of root mean square error

DG:

Daylighting

ECBC:

Energy conservation building code

IAQ:

Indoor air quality

IEA:

International energy agency

J&K:

Jammu and Kashmir

MBE:

Mean bias error

PMV:

Predicted mean vote

PPD:

Percentage of people dissatisfaction

RH:

Relative Humidity

SST:

Shear stress transport

C p :

Specific heat of fluid

ɛ :

Dissipation rate

F x :

Internal force.

K :

Turbulence kinetic energy

Nu:

Nusselt number

P :

Pressure of the fluid

Pr:

Prandtl number

Re:

Reynold’s number

S :

Invariant measure of strain rate

T :

Temperature of the fluid

U :

Mean velocity in tensor notation

u, v, and w :

Velocity components in x, y & z directions

α, β & σ :

Constants

λ :

Thermal conductivity

μ :

Viscosity of the fluid

ρ :

Density of fluid

ϕ :

Absorbed energy source

ω :

Specific dissipation rate

References

  1. IEA. World Energy Balances-IEA [Internet]. International Energy Agency. [cited 2022 Sep 30]. Available from: https://www.iea.org/reports/world-energy-balances-overview

  2. IEA. Global Status Report for Buildings and Construction 2019 – Analysis [Internet]. 2019 [cited 2022 Sep 30]. Available from: https://www.iea.org/reports/global-status-report-for-buildings-and-construction-2019

  3. Bertoldi P. Policies for energy conservation and sufficiency: Review of existing policies and recommendations for new and effective policies in OECD countries. Energy Build. 2022;1(264):112075.

    Article  Google Scholar 

  4. USAID India. PACE-D Technical Assistance Program HVAC Market Assessment and Transformation Approach for India [Internet]. 2014 [cited 2022 Oct 5]. Available from: https://www.climatelinks.org/sites/default/files/asset/document/HVAC-Report-Send-for-Printing-Low-Res.pdf

  5. Osibona O, Solomon BD, Fecht D. Lighting in the home and health: a systematic review. Int J Environ Res Public Health. 2021;18(2):609.

    Article  PubMed  PubMed Central  Google Scholar 

  6. EPA US. Introduction to Indoor Air Quality | US EPA [Internet]. [cited 2022 Oct 2]. Available from: https://www.epa.gov/indoor-air-quality-iaq/introduction-indoor-air-quality

  7. Stevens RG, Zhu Y. Electric light, particularly at night, disrupts human circadian rhythmicity: is that a problem? Philos Trans R Soc B Biol Sci. 2015;370(1667):20140120.

    Article  Google Scholar 

  8. Jeon J, Lee JH, Seo J, Jeong SG, Kim S. Application of PCM thermal energy storage system to reduce building energy consumption. J Therm Anal Calorim. 2013;111(1):279–88.

    Article  CAS  Google Scholar 

  9. Rissetto R, Schweiker M, Wagner A. Personalized ceiling fans: Effects of air motion, air direction and personal control on thermal comfort. Energy Build. 2021;15(235):110721.

    Article  Google Scholar 

  10. de la Rue du Can S, Letschert V, McNeil M, Zhou N, Sathaye J. Residential and Transport Energy Use in India: Past Trend and Future Outlook. 2009 Mar 31 [cited 2022 Sep 30]; Available from: http://www.osti.gov/servlets/purl/951788-DatYCu/

  11. Present E, Raftery P, Brager G, Graham LT. Ceiling fans in commercial buildings: In situ airspeeds & practitioner experience. Build Environ. 2019;1(147):241–57.

    Article  Google Scholar 

  12. Arens E, Hui Z. The skin’s role in human thermoregulation and comfort. Thermal Moisture Transp Fibrous Mater. 2006;1:560–602.

    Article  Google Scholar 

  13. Zhai Y, Zhang Y, Zhang H, Pasut W, Arens E, Meng Q. Human comfort and perceived air quality in warm and humid environments with ceiling fans. Build Environ. 2015;1(90):178–85.

    Article  Google Scholar 

  14. Guenther J, Sawodny O. Feature selection and Gaussian Process regression for personalized thermal comfort prediction. Build Environ. 2019;15(148):448–58.

    Article  Google Scholar 

  15. Chen W, Zhang H, Arens E, Luo M, Wang Z, Jin L, et al. Ceiling-fan-integrated air conditioning: airflow and temperature characteristics of a sidewall-supply jet interacting with a ceiling fan. Build Environ. 2020;15(171):106660.

    Article  Google Scholar 

  16. Raftery P, Douglass-Jaimes D. Ceiling fan design guide. UC Berkeley: Center for the Built Environment; 2020.

    Google Scholar 

  17. Chen W, Liu S, Gao Y, Zhang H, Arens E, Zhao L, et al. Experimental and numerical investigations of indoor air movement distribution with an office ceiling fan. Build Environ. 2018;15(130):14–26.

    Article  Google Scholar 

  18. Posner JD, Buchanan CR, Dunn-Rankin D. Measurement and prediction of indoor air flow in a model room. Energy Build. 2003;35(5):515–26.

    Article  Google Scholar 

  19. Verma SK, Anand Y, Anand S. Analysis for determining the impact of air quality and thermal comfort in an enclosed cavity. Mater Today Proc. 2020;1(28):2205–11.

    Article  Google Scholar 

  20. Ozsagiroglu S, Camci M, Taner T, Acikgoz O, Dalkilic AS, Wongwises S. CFD analyses on the thermal comfort conditions of a cooled room: a case study. J Therm Anal Calorim. 2022;147(3):2615–39.

    Article  CAS  Google Scholar 

  21. Shan X, Xu W, Lee YK, Lu WZ. Evaluation of thermal environment by coupling CFD analysis and wireless-sensor measurements of a full-scale room with cooling system. Sustain Cities Soc. 2019;1(45):395–405.

    Article  Google Scholar 

  22. Patel P, Karmur R, Choubey G, Tripathi S. Analysis of room airflow characteristics using CFD approach. Lect Notes Mech Eng. 2022. https://doi.org/10.1007/978-981-16-6928-6_2.

    Article  Google Scholar 

  23. Rohles FH, Konz SA, Jones BW. Enhancing thermal comfort with ceiling fans. Proc Hum Factors Soc Annu Meet. 2016;26(2):118–22.

    Article  Google Scholar 

  24. Wang PH, Lin JY. Using smart controlled ac and ceiling fan to save energy. eCAADe. 2013. p. 18.

  25. Cholewa T, Życzyńska A. Experimental evaluation of calculated energy savings in schools. J Therm Anal Calorim. 2020;141(1):213–20.

    Article  CAS  Google Scholar 

  26. Mihara K, Sekhar C, Takemasa Y, Lasternas B, Tham KW. Thermal comfort and energy performance of a dedicated outdoor air system with ceiling fans in hot and humid climate. Energy Build. 2019;15(203):109448.

    Article  Google Scholar 

  27. Crisp VHC. Daylighting as a passive solar energy option an assessment of its potential in non-domestic buildings. Dept. of the Environment Building Research Establishment; 1988. p. 55.

    Google Scholar 

  28. Heschong L. Daylighting and Human Performance. ASHRAE J [Internet]. 2002 [cited 2022 Oct 1]; Available from: http://www.livingdaylights.nl/wp-content/uploads/2016/12/Heschong-2002.-Daylighting-and-Human-performance..pdf

  29. Aldawoud A. Conventional fixed shading devices in comparison to an electrochromic glazing system in hot, dry climate. Energy Build. 2013;1(59):104–10.

    Article  Google Scholar 

  30. Yao J. An investigation into the impact of movable solar shades on energy, indoor thermal and visual comfort improvements. Build Environ. 2014;1(71):24–32.

    Article  Google Scholar 

  31. O’Brien W, Kapsis K, Athienitis AK. Manually-operated window shade patterns in office buildings: a critical review. Build Environ. 2013;1(60):319–38.

    Article  Google Scholar 

  32. Tzempelikos A, Athienitis AK. The impact of shading design and control on building cooling and lighting demand. Sol Energy. 2007;81(3):369–82.

    Article  Google Scholar 

  33. Ziaee N, Vakilinezhad R. Multi-objective optimization of daylight performance and thermal comfort in classrooms with light-shelves: case studies in Tehran and Sari. Iran Energy Build. 2022;1(254):111590.

    Article  Google Scholar 

  34. Acosta I, Munoz C, Campano MA, Navarro J. Analysis of daylight factors and energy saving allowed by windows under overcast sky conditions. Renew Energy. 2015;77(1):194–207.

    Article  Google Scholar 

  35. Fairuz Syed Fadzil S, Sia SJ. Sunlight control and daylight distribution analysis: the KOMTAR case study. Build Environ. 2004;39(6):713–7.

    Article  Google Scholar 

  36. Birkha Mohd Ali S, Hasanuzzaman M, Rahim NA, Mamun MAA, Obaidellah UH. Analysis of energy consumption and potential energy savings of an institutional building in Malaysia. Alex Eng J. 2021;60(1):805–20.

    Article  Google Scholar 

  37. Alhagla K, Mansour A, Elbassuoni R. Optimizing windows for enhancing daylighting performance and energy saving. Alex Eng J. 2019;58(1):283–90.

    Article  Google Scholar 

  38. Park T, Kim B, Hwang G, Kang Y, Lee I, Ahn Y. Improving comfort and air conditioner performance by optimizing controllers under actual usage conditions. Appl Sci. 2021;11(11):4818.

    Article  CAS  Google Scholar 

  39. Babich F, Cook M, Loveday D, Rawal R, Shukla Y. Transient three-dimensional CFD modelling of ceiling fans. Build Environ. 2017;1(123):37–49.

    Article  Google Scholar 

  40. Tartarini F, Schiavon S, Cheung T, Hoyt T. CBE thermal comfort tool: online tool for thermal comfort calculations and visualizations. SoftwareX. 2020;1(12):100563.

    Article  Google Scholar 

  41. Xu F, Wang C, Hong K, Liu Y. Immersogeometric thermal analysis of flows inside buildings with reconfigurable components. J Therm Anal Calorim. 2021;143(6):4107–17.

    Article  CAS  Google Scholar 

  42. Tuncer C. Turbulence models and their application : efficient numerical methods with computer programs. Horizons Pub; 2004. p. 118.

    Google Scholar 

  43. Anand Y, Verma SK, Anand S. Transient 3-D modeling of ceiling fan for achieving thermal comfort. In: 2018 Building Performance Analysis Conference and SimBuild. 2018. pp. 197–204.

  44. de Faria LC, de Romero MA, Porras-Amores C, de Pirró LFS, Saez PV. Prediction of the impact of air speed produced by a mechanical fan and operative temperature on the thermal sensation. Buildings. 2022;12(2):101.

    Article  Google Scholar 

  45. Huang L, Kang J. Thermal comfort in winter incorporating solar radiation effects at high altitudes and performance of improved passive solar design—Case of Lhasa. Build Simul. 2020;14(6):1633–50.

    Article  Google Scholar 

  46. Lin HH. Improvement of human thermal comfort by optimizing the airflow induced by a ceiling fan. Sustainability. 2019;11(12):3370.

    Article  CAS  Google Scholar 

  47. Hsiao SW, Lin HH, Lo CH. A study of thermal comfort enhancement by the optimization of airflow induced by a ceiling fan. J Interdiscip Math. 2016;19(4):859–91.

    Article  Google Scholar 

  48. Jain A, Upadhyay RR, Chandra S, Saini M, Kale S. Experimental investigation of the flow field of a ceiling fan. Proc ASME Heat Transf Fluids Eng Summer Conf. 2004;3:93–9.

    Google Scholar 

  49. Standard 55–Thermal environmental conditions for human occupancy [Internet]. 2010 [cited 2022 Oct 2]. Available from: https://www.ashrae.org/technical-resources/bookstore/standard-55-thermal-environmental-conditions-for-human-occupancy

  50. Zhuang R, Li X, Tu J. CFD study of the effects of furniture layout on indoor air quality under typical office ventilation schemes. Build Simul. 2013;7(3):263–75.

    Article  Google Scholar 

  51. Yau YH, Toh HS, Chew BT, Nik Ghazali NN. A review of human thermal comfort model in predicting human–environment interaction in non-uniform environmental conditions. J Therm Anal Calorim. 2022;15:1–25.

    Google Scholar 

  52. Fanger PO. Thermal comfort. Analysis and applications in environmental engineering. Thermal comfort Analysis and applications in environmental engineering. 1970

  53. Nicol JF, Roaf S. Rethinking thermal comfort. Build Res Inf. 2017;45(7):711–6.

    Article  Google Scholar 

  54. Yüksel A, Arıcı M, Krajčík M, Civan M, Karabay H. A review on thermal comfort, indoor air quality and energy consumption in temples. J Build Eng. 2021;1:35.

    Google Scholar 

  55. Atthajariyakul S, Lertsatittanakorn C. Small fan assisted air conditioner for thermal comfort and energy saving in Thailand. Energy Convers Manag. 2008;49(10):2499–504.

    Article  Google Scholar 

  56. Shen E, Hu J, Patel M. Energy and visual comfort analysis of lighting and daylight control strategies. Build Environ. 2014;78:155–70.

    Article  Google Scholar 

  57. ECBC. Energy conservation building codes [Internet]. 2017 [cited 2022 Oct 1]. Available from: https://beeindia.gov.in/sites/default/files/BEE_ECBC%202017.pdf

  58. ANSI/ASHRAE/IES Standard 90.1–2010–Energy standard for buildings except low-rise residential buildings [Internet]. [cited 2022 Oct 1]. Available from: https://www.ashrae.org/technical-resources/bookstore/standard-90-1

  59. Pérez-Lombard L, Ortiz J, Pout C. A review on buildings energy consumption information. Energy Build. 2008;40(3):394–8.

    Article  Google Scholar 

  60. Mousavi S, Jahangir MH, Kasaeian A. Techno-economic analysis and thermal–electrical demand optimization of a sustainable residential building using machine learning approach. J Therm Anal Calorim. 2022;8:1–18.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to this work.

Corresponding author

Correspondence to S. Anand.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Verma, S.K., Anand, Y. & Anand, S. Multi-framework-based approach for optimizing dwelling conditions and energy efficiency in subtropical climatic conditions. J Therm Anal Calorim 148, 3535–3554 (2023). https://doi.org/10.1007/s10973-022-11932-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-022-11932-1

Keywords

Navigation