Skip to main content
Log in

Experimental investigations on laminar burning velocity variation of CH4 + air mixtures at elevated temperatures with CO2 and N2 dilution

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Experimental investigations have been performed to examine the role of CO2 and N2 dilution on the laminar burning velocity variation of CH4 + air premixed mixtures at high mixture temperatures using the externally heated diverging channel method. The experiments on diluted CH4 + air mixtures are carried out for various mixture equivalence ratios (ϕ = 0.8–1.2) at higher mixture temperatures (300–650 K) and atmospheric pressure. The numerical predictions using three extensively used chemical kinetic models (GRI Mech 3.0, FFCM-1 and Aramco 2.0) are used to delineate the effect of CO2 and N2 dilution on laminar burning velocity variation. The volume fraction of both the diluents, i.e., CO2 and N2, is varied from 0 to 30% by volume distinctively in CH4 fuel. The burning velocity is observed to decrease sharply with CO2 dilution as compared to N2 dilution case. Detailed sensitivity analysis is carried out to understand the role of various key reactions on the variation of laminar burning velocity of the mixture with dilution. FFCM-1 kinetic model shows a good agreement of the measured values of laminar burning velocity as compared to the kinetic models of Aramco 2.0 and GRI Mech 3.0 mechanisms at various mixture temperature and dilution conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig.10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Chan YL, Zhu MM, Zhang ZZ, Liu PF, Zhang DK. The effect of CO2 dilution on the laminar burning velocity of premixed methane/air flames. Energy Procedia. 2015;75:3048–53.

    Article  CAS  Google Scholar 

  2. Hu E, Jiang X, Huang Z, Iida N. Numerical study on the effects of diluents on the laminar burning velocity of methane–air mixtures. Energy Fuels. 2012;26:4242–52.

    Article  CAS  Google Scholar 

  3. Xie M, Fu J, Zhang Y, Shu J, Ma Y, Liu J, et al. Numerical analysis on the effects of CO2 dilution on the laminar burning velocity of premixed methane/air flame with elevated initial temperature and pressure. Fuel. 2020;264:116858.

    Article  CAS  Google Scholar 

  4. Gu XJ, Haq MZ, Lawes M, Woolley R. Laminar burning velocity and Markstein lengths of methane–air mixtures. Combust Flame. 2000;121:41–58.

    Article  CAS  Google Scholar 

  5. Wang Z, Yelishala SC, Yu G, Metghalchi H, Levendis YA. Effects of carbon dioxide on laminar burning speed and flame instability of methane/air and propane/air mixtures: a literature review. Energy Fuels. 2019;33:9403–18.

    Article  CAS  Google Scholar 

  6. Prathap C, Ray A, Ravi MR. Investigation of nitrogen dilution effects on the laminar burning velocity and flame stability of syngas fuel at atmospheric condition. Combust Flame. 2008;155:145–60.

    Article  CAS  Google Scholar 

  7. Hu E, Fu J, Pan L, Jiang X, Huang Z, Zhang Y. Experimental and numerical study on the effect of composition on laminar burning velocities of H2/CO/N2/CO2/air mixtures. Int J Hydrogen Energy. 2012;37:18509–19.

    Article  CAS  Google Scholar 

  8. Goswami M, van Griensven JGH, Bastiaans RJM, Konnov AA, de Goey LPH. Experimental and modeling study of the effect of elevated pressure on lean high-hydrogen syngas flames. Proc Combust Inst. 2015;35:655–62.

    Article  CAS  Google Scholar 

  9. Kishore VR, Ravi MR, Ray A. Adiabatic burning velocity and cellular flame characteristics of H2–CO–CO2–air mixtures. Combust Flame. 2011;158:2149–64.

    Article  Google Scholar 

  10. Wang ZH, Weng WB, He Y, Li ZS, Cen KF. Effect of H2/CO ratio and N2/CO2 dilution rate on laminar burning velocity of syngas investigated by direct measurement and simulation. Fuel. 2015;141:285–92.

    Article  CAS  Google Scholar 

  11. Mohammad A, Juhany KA. Laminar burning velocity and flame structure of DME/methane+ air mixtures at elevated temperatures. Fuel. 2019;245:105–14.

    Article  CAS  Google Scholar 

  12. Stone R, Clarke A, Beckwith P. Correlations for the laminar-burning velocity of methane/diluent/air mixtures obtained in free-fall experiments. Combust Flame. 1998;114:546–55.

    Article  CAS  Google Scholar 

  13. Hinton N, Stone R. Laminar burning velocity measurements of methane and carbon dioxide mixtures (biogas) over wide ranging temperatures and pressures. Fuel. 2014;116:743–50.

    Article  CAS  Google Scholar 

  14. Khan AR, Anbusaravanan S, Kalathi L, Velamati R, Prathap C. Investigation of dilution effect with N2/CO2 on laminar burning velocity of premixed methane/oxygen mixtures using freely expanding spherical flames. Fuel. 2017;196:225–32.

    Article  CAS  Google Scholar 

  15. Wang S, Wang Z, He Y, Han X, Sun Z, Zhu Y, et al. Laminar burning velocities of CH4/O2/N2 and oxygen-enriched CH4/O2/CO2 flames at elevated pressures measured using the heat flux method. Fuel. 2020;259:116152.

    Article  CAS  Google Scholar 

  16. Duva BC, Chance LE, Toulson E. Dilution effect of different combustion residuals on laminar burning velocities and burned gas Markstein lengths of premixed methane/air mixtures at elevated temperature. Fuel. 2020;267:117153.

    Article  CAS  Google Scholar 

  17. Miao H, Liu Y. Measuring the laminar burning velocity and Markstein length of premixed methane/nitrogen/air mixtures with the consideration of nonlinear stretch effects. Fuel. 2014;121:208–15.

    Article  CAS  Google Scholar 

  18. Galmiche B, Halter F, Foucher F, Dagaut P. Effects of dilution on laminar burning velocity of premixed methane/air flames. Energy Fuels. 2011;25:948–54.

    Article  CAS  Google Scholar 

  19. Elia M, Ulinski M, Metghalchi M. Laminar burning velocity of methane–air–diluent mixtures. J Eng Gas Turbines Power. 2001;123:190–6.

    Article  CAS  Google Scholar 

  20. Mitu M, Giurcan V, Razus D, Oancea D. Inert gas influence on the laminar burning velocity of methane-air mixtures. J Hazard Mater. 2017;321:440–8.

    Article  CAS  PubMed  Google Scholar 

  21. Hassan MI, Aung KT, Faeth GM. Measured and predicted properties of laminar premixed methane/air flames at various pressures. Combust Flame. 1998;115:539–50.

    Article  CAS  Google Scholar 

  22. Tahtouh T, Halter F, Mounaïm-Rousselle C. Measurement of laminar burning speeds and Markstein lengths using a novel methodology. Combust Flame. 2009;156:1735–43.

    Article  CAS  Google Scholar 

  23. Dowdy DR, Smith DB, Taylor SC, Williams A. The use of expanding spherical flames to determine burning velocities and stretch effects in hydrogen/air mixtures. Symp (Int) Combust. 1991;23:325–32.

    Article  Google Scholar 

  24. Brown MJ, McLean IC, Smith DB, Taylor SC. Markstein lengths of CO/H2/air flames, using expanding spherical flames. Symp (Int) Combust. 1996;26:875–81.

    Article  Google Scholar 

  25. Pizzuti L, Martins CA, dos Santos LR, Guerra DRS. Laminar burning velocity of methane/air mixtures and flame propagation speed close to the chamber wall. Energy Procedia. 2017;120:126–33.

    Article  CAS  Google Scholar 

  26. Ueda A, Nisida K, Matsumura Y, Ichikawa T, Nakashimada Y, Endo T, et al. Effects of hydrogen and carbon dioxide on the laminar burning velocities of methane–air mixtures. J Energy Inst. 2021;99:178–85.

    Article  CAS  Google Scholar 

  27. Xiang L, Chu H, Ren F, Gu M. Numerical analysis of the effect of CO2 on combustion characteristics of laminar premixed methane/air flames. J Energy Inst. 2019;92:1487–501.

    Article  CAS  Google Scholar 

  28. van Maaren A, Thung DS, de Goey LRH. Measurement of flame temperature and adiabatic burning velocity of methane/air mixtures. Combust Sci Technol. 1994;96:327–44.

    Article  Google Scholar 

  29. Chu H, Xiang L, Meng S, Dong W, Gu M, Li Z. Effects of N2 dilution on laminar burning velocity, combustion characteristics and NOx emissions of rich CH4–air premixed flames. Fuel. 2021;284:119017.

    Article  CAS  Google Scholar 

  30. Konnov AA, Mohammad A, Kishore VR, Kim NI, Prathap C, Kumar S. A comprehensive review of measurements and data analysis of laminar burning velocities for various fuel+ air mixtures. Prog Energy Combust Sci. 2018;68:197–267.

    Article  Google Scholar 

  31. Dyakov IV, Konnov AA, de Ruyck J, Bosschaart KJ, Brock ECM, de Goey LPH. Measurement of adiabatic burning velocity in methane-oxygen-nitrogen mixtures. Combust Sci Technol. 2001;172:81–96.

    Article  CAS  Google Scholar 

  32. Gardiner W, Lissianski V, Qin Z, Smith G, Golden D, Frenklach M, et al. The gri-mechtm model for natural gas combustion and no formation and removal chemistry. In: 5th International Conference on Combustion Technologies for a Clean Environment. 1999.

  33. Varghese RJ, Kolekar H, Kishore VR, Kumar S. Measurement of laminar burning velocities of methane-air mixtures simultaneously at elevated pressures and elevated temperatures. Fuel. 2019;257:116120.

    Article  CAS  Google Scholar 

  34. Zhou C-W, Li Y, O’Connor E, Somers KP, Thion S, Keesee C, et al. A comprehensive experimental and modeling study of isobutene oxidation. Combust Flame. 2016;167:353–79.

    Article  CAS  Google Scholar 

  35. Li Y, Zhou C-W, Somers KP, Zhang K, Curran HJ. The oxidation of 2-butene: a high pressure ignition delay, kinetic modeling study and reactivity comparison with isobutene and 1-butene. Proc Combust Inst. 2017;36:403–11.

    Article  CAS  Google Scholar 

  36. Akram M, Kishore VR, Kumar S. Laminar burning velocity of propane/CO2/N2–air mixtures at elevated temperatures. Energy Fuels. 2012;26:5509–18.

    Article  CAS  Google Scholar 

  37. Akram M, Saxena P, Kumar S. Laminar burning velocity of methane-air mixtures at elevated temperatures. Energy Fuels. 2013;27:3460–6.

    Article  CAS  Google Scholar 

  38. Paidi SK, Bhavaraju A, Akram M, Kumar S. Effect of N2/CO2 dilution on laminar burning velocity of H2-air mixtures at high temperatures. Int J Hydrogen Energy. 2013;38(1):13812–21. https://doi.org/10.1016/j.ijhydene.2013.08.024.

    Article  CAS  Google Scholar 

  39. Varghese RJ, Kishore VR, Akram M, Yoon Y, Kumar S. Burning velocities of DME(dimethyl ether)-air premixed flames at elevated temperatures. Energy. 2017;126:34–41. https://doi.org/10.1016/j.energy.2017.03.004.

    Article  CAS  Google Scholar 

  40. Akram M, Kumar S. Experimental studies on dynamics of methane–air premixed flame in meso-scale diverging channels. Combust Flame. 2011;158:915–24.

    Article  CAS  Google Scholar 

  41. Katoch A, Asad M, Minaev S, Kumar S. Measurement of laminar burning velocities of methanol–air mixtures at elevated temperatures. Fuel. 2016;182:57–63.

    Article  CAS  Google Scholar 

  42. Kee RJ, Rupley FM, Miller JA. Chemkin-II: a Fortran chemical kinetics package for the analysis of gas-phase chemical kinetics. In: Sandia National Lab. (SNL-CA), Livermore, CA (United States). 1989.

  43. Goswami M, Derks SCR, Coumans K, Slikker WJ, de Andrade Oliveira MH, Bastiaans RJM, et al. The effect of elevated pressures on the laminar burning velocity of methane+ air mixtures. Combust Flame. 2013;160:1627–35.

    Article  CAS  Google Scholar 

  44. Dirrenberger P, le Gall H, Bounaceur R, Glaude P-A, Battin-Leclerc F. Measurements of laminar burning velocities above atmospheric pressure using the heat flux method—application to the case of n-pentane. Energy Fuels. 2015;29:398–404.

    Article  CAS  Google Scholar 

  45. Yadav VK, Ray A, Ravi MR. Experimental and computational investigation of the laminar burning velocity of hydrogen-enriched biogas. Fuel. 2019;235:810–21.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

SS contributed to conceptualization, methodology, software, validation, formal analysis, investigation, writing—original draft, and visualization. EVJ contributed to methodology, software, formal analysis, and writing—review and editing. SK, NK contributed to conceptualization, validation, resources, writing—review and editing, supervision, project administration, and funding acquisition.

Corresponding author

Correspondence to Sudarshan Kumar.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper. The authors declare no financial interests which may be considered as potential competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 44 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sampath, S., Jithin, E.V., Kumbhakarna, N. et al. Experimental investigations on laminar burning velocity variation of CH4 + air mixtures at elevated temperatures with CO2 and N2 dilution. J Therm Anal Calorim 148, 2517–2526 (2023). https://doi.org/10.1007/s10973-022-11917-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-022-11917-0

Keywords

Navigation