Skip to main content
Log in

Analytical study of a moving boundary problem describing sublimation process of a humid porous body with convective heat and mass transfer

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Sublimation of a humid porous body occurs commonly in food technology and thermal energy storage system . Especially, in accelerated freeze-drying, preservation of biological materials to be denatured is the prime interest. Despite the available literature on sublimation, there is a general lack of mathematical analysis of the effect of convection in the frozen and vapour regions, and rate of evaporation of water vapour in the vapour region. Therefore, it is essential to explore a mathematical model which accounts for these physical processes. This paper attempts to address these gaps in the modeling of sublimation of a humid porous body. For a specific form of the velocity profile, an exact solution of the current problem is obtained via similarity technique. Particularly, results from the current work are shown to be in strong agreement with the results of a previous work. The impact of various dimensionless problem parameters on the sublimation process is discussed extensively. Condition for sublimation limit is discussed. It is obtained that sublimation can take place only under limit of sublimation curve. It is found that, in the presence of convection, sublimation process becomes fast and the material requires less time than usual to sublimate. Furthermore, higher rate of evaporation of water vapour produces a lower temperature field and slower propagation rate of sublimation interface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

Abbreviations

\(\alpha\) :

Thermal diffusivity (\({\text{m}^2} {\text{s}^{-1}}\))

\(c_{\mathrm{p}}\) :

Specific heat (\(\text{J} \text{kg}^{-1} \text{K}^{-1}\))

\(c_{\mathrm{pv}}\) :

Specific heat of water vapour (\(\text{J} \text{kg}^{-1} \text{K}^{-1}\))

k :

Thermal conductivity (\(\text{W} \text{m}^{-1}\text{K}^{-1}\))

\(\rho\) :

Material density (\(\text{kg m}^{-3}\))

L :

Latent heat of sublimation (\(\text{J}\ \text{kg}^{-1}\))

u :

Unidirectional molecular motion (\(\text{m}\ \text{s}^{-1}\))

\(C_{\mathrm{m}}\) :

Molar concentration of vapour moisture (\(\text{mol}\ \text{m}^{-3}\))

\(M_{\mathrm{m}}\) :

Molecular mass (\(\text{kg}\ \text{mol}^{-1}\))

\(p_{\mathrm{v}}\) :

Vapour pressure (\(\text{kg}\ \text{m}^{-1}\ s^{-2}\))

\(R_{\mathrm{0}}\) :

Universal gas constant (\(\text{kg}\ \text{m}^{2}\ \text{s}^{-2}\ \text{K}^{-1}\ \text{mol}^{-1}\))

t :

Time (s)

Exp(.):

Exponential function

Erf(.):

Error function

F :

Temperature (K)

\(F_{\mathrm{v}}\) :

Sublimation temperature (K)

\(F_{\mathrm{s}}\) :

Surface temperature (K)

\(T_{\mathrm{1}}\) :

Non-dimensional temperature profile \(\left( T_{\mathrm{1}}=1+\frac{F_{\mathrm{1}}-F_{\mathrm{v}}}{F_{\mathrm{s}}-F_{\mathrm{v}}}\right)\)

\(T_{\mathrm{2}}\) :

Non-dimensional temperature profile \(\left( T_{\mathrm{2}}=\frac{F_{\mathrm{2}}-F_{\mathrm{0}}}{F_{\mathrm{v}}-F_{\mathrm{0}}}\right)\)

:

Non-dimensional molar concentration

\(\theta\) :

Non-dimensional temperature/concentration profile

x :

Space coordinate (m)

\(\xi\) :

Non-dimensional space coordinate

s(t):

Moving sublimation front (m)

\(\alpha _{\mathrm{21}}\) :

Non-dimensional thermal diffusivity \(\left( \frac{\alpha _{\mathrm{2}}}{\alpha _{\mathrm{1}}}\right)\)

C :

Non-dimensional molar limit concentration \(\left( C=\frac{C_{\mathrm{m,0}}-C_{\mathrm{m,max}}}{C_{\mathrm{m,max}}-C_{\mathrm{m,s}}}\right)\)

\(\beta\) :

Non-dimensional quantity \(\left( \beta =\frac{ c_{\mathrm{pv}}M_{\mathrm{m}} C_{\mathrm{m,0}}}{c_{\mathrm{p}} \rho _{\mathrm{1}}}\right)\)

\(\gamma\) :

Non-dimensional heat flux \(\left( \gamma =\frac{k_{\mathrm{1}} {(F_{\mathrm{s}}-F_{\mathrm{v}})}}{k_{\mathrm{2}} {(F_{\mathrm{v}}-F_{\mathrm{0}})}}\right)\)

\(l_{\mathrm{0}}\) :

Non-dimensional latent heat of sublimation \(\left( l_{\mathrm{0}}=\frac{C_{\mathrm{m,0}}M_{\mathrm{m}} L}{k_{\mathrm{2}} {(F_{\mathrm{v}}-F_{\mathrm{0}})}}\alpha _{\mathrm{1}}\right)\)

\(\lambda\) :

Unknown constant \(\left( \lambda =\frac{s(t)}{2\sqrt{\alpha _{\mathrm{1}}t}}\right)\)

Pe :

Péclet number \(\left( Pe=\frac{u}{\sqrt{\frac{\alpha }{t}}}\right)\)

Lu :

Luikov number \(\left( Lu=\frac{\alpha _{\mathrm{m}}}{\alpha _{\mathrm{1}}}\right)\)

0:

Initial

1:

Vapour region

2:

Frozen region

m :

Moisture

s :

Surface \(x=0\)

References

  1. Srikiatden J, Roberts JS. Moisture transfer in solid food materials: a review of mechanisms, models, and measurements. Int J Food Prop. 2007;10:739–77.

    Article  CAS  Google Scholar 

  2. Upadhyay S, Rai KN. A new iterative least square Chebyshev wavelet Galerkin FEM applied to dual phase lag model on microwave drying of foods. Int J Ther Sci. 2019;139:217–31.

    Article  Google Scholar 

  3. Srinivasan G, Muneeshwaran M, Wang CC, et al. An experimental investigation on the cooling curve and drying behavior of static and spin-frozen samples in freeze-drying process. J Therm Anal Calorim. 2022;147:11221–30.

    Article  CAS  Google Scholar 

  4. Hindmarsh RCA, Wateren FMVD, Verbers ALLM. Sublimation of ice through sediment in Beacon Valley, Antarctica. Phys Geogr Geograf Annaler Ser A. 1998;80:209–19.

    Article  Google Scholar 

  5. Tung H-Y, Guan Z-Y, Liu T-Yu, Chen H-Y. Vapor sublimation and deposition to build porous particles and composites. Nat Commun. 2018;9:2564.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Mandal S, Kulkarni BD. Separation strategies for processing of dilute liquid streams. Int J Chem Eng. 2011;2011: 659012.

    Article  Google Scholar 

  7. Wang W, Yang J, Hua D, Pan Y, Wanga S, Chen G. Experimental and numerical investigations on freeze-drying of porous media with prebuilt porosity. Chem Phys Lett. 2018;700:80–7.

    Article  CAS  Google Scholar 

  8. Szentmihályi K, May Z, Bódis E, et al. Morphology transformation of thermosensitive metronidazol by spray freeze-drying. J Therm Anal Calorim. 2022;147:11777–86.

    Article  Google Scholar 

  9. Jumikis AR. Upward migration of soil moisture by various mechanisms upon freezing. Phys Snow Ice Proc. 1967;1:1387–99.

    Google Scholar 

  10. Rani P, Tripathy PP. Modelling of moisture migration during convective drying of pineapple slice considering non-isotropic shrinkage and variable transport properties. J Food Sci Technol. 2020;57:3748–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Bouazza A, Singh RM, Rowe RK, Gassner F. Heat and moisture migration in a geomembrane–GCL composite liner subjected to high temperatures and low vertical stresses. Geotextiles Geomembranes. 2014;42:555–63.

    Article  Google Scholar 

  12. Labuza TP, Hyman CR. Moisture migration and control in multi-domain foods. Trends Food Sci Tech. 1998;9:47–55.

    Article  CAS  Google Scholar 

  13. Singh AK, Singh R, Chaudhary DR. Heat conduction and moisture migration in unsaturated soils under temperature gradients. Pramana J Phys. 1989;33:-594.

  14. Muneeshwaran M, Srinivasan G, Raja B, et al. Investigation of heat and mass transfer behavior of mannitol during vial freeze-drying. J Therm Anal Calorim. 2022;147:2393–404.

    Article  CAS  Google Scholar 

  15. Ghahremannezhad A, Xu H, Nazari MA, Ahmadi MH, Vafai K. Effect of porous substrates on thermohydraulic performance enhancement of double layer microchannel heat sinks. Int J Heat Mass Transf. 2019;131:52–63.

    Article  CAS  Google Scholar 

  16. Jahangir MH, Ghazvini M, Pourfayaz F, Ahmadi MH. A numerical study into effects of intermittent pump operation on thermal storage in unsaturated porous media. Appl Ther Eng. 2018;138:110–21.

    Article  Google Scholar 

  17. Vaziri R, Oladipo AA, Sharifpur M, Taher R, Ahmadi MH, Issakhov A. Efficiency enhancement in double-pass perforated glazed solar air heaters with porous beds: Taguchi-artificial neural network optimization and cost-benefit analysis. Sustainability. 2021;13:11654.

    Article  CAS  Google Scholar 

  18. Fedorov VA, Zhukov EG, Nikolashin SV, et al. Sublimation purification of crude arsenic recovered from nonferrous waste. Inorg Mater. 2001;37:1011–6.

    Article  CAS  Google Scholar 

  19. Jambon-Puillet E, Shahidzadeh N, Bonn D. Singular sublimation of ice and snow crystals. Nat Commun. 2018;9:4191.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Tien RH, Geiger GE. A heat transfer analysis of the solidification of a binary eutectic system. J Heat Transf. 1967;89:230–3.

    Article  CAS  Google Scholar 

  21. Tien RH, Geiger GE. The unidimensional solidification of a binary eutectic system with a time-dependent surface temperature. J Heat Transf. 1968;90:27–31.

    Article  CAS  Google Scholar 

  22. Jain A, Parhizi M. Conditionally exact closed-form solution for moving boundary problems in heat and mass transfer in the presence of advection. Int J Heat Mass Transf. 2021;180: 121802.

    Article  Google Scholar 

  23. Jafari H, Hosseinzadeh H, Gholami MR, Ganji DD. Application of homotopy perturbation method for heat and mass transfer in the two-dimensional unsteady flow between parallel plates. Int J Appl Comput Math. 2017;3:1677–88.

    Article  Google Scholar 

  24. Chaurasiya V, Wakif A, Shah NA, Singh J. A study on cylindrical moving boundary problem with variable thermal conductivity and convection under the most realistic boundary conditions. Int Commun Heat Mass Transf. 2022;138: 106312.

    Article  Google Scholar 

  25. Chaurasiya V, Upadhyay S, Rai KN, Singh J. A new look in heat balance integral method to a two-dimensional Stefan problem with convection. Num Heat Transf Part A Appl. 2022;82:529–42.

    Article  Google Scholar 

  26. Chaurasiya V, Kumar D, Rai KN, Singh J. A computational solution of a phase-change material in the presence of convection under the most generalized boundary condition. Ther Sci Eng Prog. 2020;20100664.

  27. Chaudhary RK, Rai KN, Singh J. A study for multi-layer skin burn injuries based on DPL bioheat model. J Therm Anal Calorim. 2021;146:1171–89.

    Article  CAS  Google Scholar 

  28. Chaudhary RK, Rai KN, Singh J. A study of thermal injuries when skin surface subjected under most generalized boundary condition. Comput Therm Sci. 2020;12:529–53.

    Article  Google Scholar 

  29. Luikov AV. Systems of differential equations of heat and mass transfer in capillary-porous bodies. Int J Heat Mass Transf. 1975;18:1–14.

    Article  CAS  Google Scholar 

  30. Gupta L. An approximate solution of the generalized Stefan’s problem in a porous medium. Int J Heat Mass Transf. 1974;17:313–21.

    Article  Google Scholar 

  31. Cho SH. An exact solution of the coupled phase change problem in a porous medium. Int J Heat Mass Transf. 1975;18:1139–42.

    Article  Google Scholar 

  32. Mikhailov MD. Exact Solution of Temperature and Moisture Distributions in a Porous Half-Space with Moving Evaporation Front. Int J Heat Mass Transf. 1975;18:797–804.

    Article  Google Scholar 

  33. Mikhailov MD. Exact solution for freezing of humid porous half-space. 1976;19:651–5.

  34. Marcus EAS, Tarzia DA. Exact solutions for drying with coupled phase-change in a porous medium with a heat flux condition on the surface. Comput Appl Math. 2003;22:293–311.

    Google Scholar 

  35. Hayashi Y, Komori T, Katayama K. Analytical and experimental investigation of self-freezing. J Heat Transf. 1975;97:321–5.

    Article  CAS  Google Scholar 

  36. Lin S. An exact solution of the sublimation problem in a porous medium. J Heat Transf. 1981;103:165–8.

    Article  Google Scholar 

  37. Lin S. Exact solution for determination of the maximum sublimation rate in a porous medium. J Heat Transf. 2002;124(3):525–9.

    Article  Google Scholar 

  38. Douglas TA, Mellon MT. Sublimation of terrestrial permafrost and the implications for ice-loss processes on Mars. Nat Commun. 2019;10:1716.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Zhang C, Bu X, He J, Liu C, Lin G, Miao J. Simulation of evaporation and sublimation process in porous plate water sublimator based on a reduced CFD model. Int J Heat Mass Transf. 2020;154: 119787.

    Article  Google Scholar 

  40. Jitendra, Rai KN, Singh J. An analytical study on sublimation process in the presence of convection effect with heat and mass transfer in porous medium. Int Commun Heat Mass Transf. 2022;131:105833.

    Article  Google Scholar 

  41. Merivaara A, Zini J, Koivunotko E, Valkonen S, Korhonen O, Fernandes FM, Yliperttula M. Preservation of biomaterials and cells by freeze-drying: change of paradigm. J Control Rel. 2021;336:480–98.

    Article  CAS  Google Scholar 

  42. Liu Y, Zhang Z, Hu L. High efficient freeze-drying technology in food industry. Crit Rev Food Sci Nutri. 2022;62:3370–88.

    Article  Google Scholar 

  43. Castro AM, Mayorga EY, Moreno FL. Mathematical modelling of convective drying of fruits: a review. J Food Eng. 2018;223:152–67.

    Article  Google Scholar 

  44. Chaurasiya V, Singh J. An analytical study of coupled heat and mass transfer freeze-drying with convection in a porous half body: a moving boundary problem. J Energy Stor. 2022;55: 105394.

    Article  Google Scholar 

  45. Turkyilmazoglu M. Stefan problems for moving phase change materials and multiple solutions. Int J Therm Sci. 2018;126:67–73.

    Article  Google Scholar 

  46. Chaurasiya V, Chaudhary RK, Wakif A, Singh J. A one-phase Stefan problem with size-dependent thermal conductivity and moving phase change material under the most generalized boundary condition. Waves Rand Compl Med. 2022. https://doi.org/10.1080/17455030.2022.2092913.

    Article  Google Scholar 

  47. Chaurasiya V, Rai KN, Singh J. Heat transfer analysis for the solidification of a binary eutectic system under imposed movement of the material. J Ther Anal Calorim. 2021;147:3229–46.

    Article  Google Scholar 

  48. Chaurasiya V, Kumar D, Rai KN, Singh J. Heat transfer analysis describing freezing of a eutectic system by a line heat sink with convection effect in cylindrical geometry. Zeits für Naturf A. 2022;77:589–98.

    Article  CAS  Google Scholar 

  49. Abramowitz M, Stegun IA. Handbook of mathematical functions with formulas, graphs and mathematical tables. Washington DC (1965).

Download references

Acknowledgements

Vikas Chaurasiya, one of the authors is grateful to DST (INSPIRE)-New Delhi (India) for the Senior Research Fellowship vide Ref. No. DST/INSPIRE/03/2017/000184.

Funding

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Author information

Authors and Affiliations

Authors

Contributions

JS: Supervision, formulation of model, reviewing, planning and writing article. VC: Formulation of model, analytical solution of mathematical model, figure plotting, writing, analysis and data curation and original draft preparation. AJ: Supervision, reviewing, planning and writing article.

Corresponding author

Correspondence to Jitendra Singh.

Ethics declarations

Conflict of interest

The authors have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chaurasiya, V., Jain, A. & Singh, J. Analytical study of a moving boundary problem describing sublimation process of a humid porous body with convective heat and mass transfer. J Therm Anal Calorim 148, 2567–2584 (2023). https://doi.org/10.1007/s10973-022-11906-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-022-11906-3

Keywords

Navigation