Skip to main content
Log in

Co-pyrolysis of algae with other carbon-based materials: a review on synergistic products and molecular reaction pathway

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

As a kind of pyrolysis feedstock, algae has shown great potential in generating valuable products such as pyrolytic oil, gas and semi-coke. Thermal transformation of algae and other carbon-based materials via co-pyrolysis could generate fuels or value-added products. This paper aims to summarize the present researches about the co-pyrolysis characteristics of algae biomass with different low quality carbon-based materials. Our discussion mainly focuses on the research status of experimental analysis and theoretical calculations. State-of-the-art technologies and methods for the co-pyrolysis such as dry distillation system of fixed bed reactor, fluidized bed reactor, and micro-scale experimental analysis of TGA, FTIR, MS and Py-GCMS are reviewed in detail. The reaction mechanism which should be obtained through theoretical calculation is critically reviewed in this paper. Based on the quantum chemistry calculation results of the previous researches, the key developments about the co-pyrolysis chemistry of algae were summarized by focusing on molecular structure of the reactant and corresponding reaction pathways. It cannot be denied that there are also great gaps between quantum chemistry modeling and the actual co-pyrolysis process, indicating a pressing need for more complex quantitative calculation models and algorithms. Overall, the recent progress of crude bio-oil production, the excellent characteristic and future prospect of co-pyrolysis were discussed and concluded in this paper, which sheds light on further investigation of algae comprehensive utilization.

Graphical abstract

The structure diagram of the article

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Manzano-Agugliaro F, Alcayde A, Montoya FG, Zapata-Sierra A, Gil C. Scientific production of renewable energies worldwide: an overview. Renew Sustain Energy Rev. 2013;18:134–43.

    Article  Google Scholar 

  2. Junginger HM, Mai-Moulin T, Daioglou V, Fritsche U, Guisson R, Hennig C, Thrän D, Heinimö J, Hess JR, Lamers P, et al. The future of biomass and bioenergy deployment and trade: a synthesis of 15 years iea bioenergy task 40 on sustainable bioenergy trade. Biofuels, Bioprod Biorefin. 2019;13(2):247–66.

    Article  CAS  Google Scholar 

  3. Laamanen CA, Ross GM, Scott JA. Flotation harvesting of microalgae. Renew Sustain Energy Rev. 2016;58:75–86.

    Article  Google Scholar 

  4. Lakshmikandan M, Murugesan AG, Wang S, Abomohra AE-F, Jovita PA, Kiruthiga S. Sustainable biomass production under co2 conditions and effective wet microalgae lipid extraction for biodiesel production. J Clean Prod. 2020;247:119398.

    Article  CAS  Google Scholar 

  5. Hallenbeck PC, Grogger M, Mraz M, Veverka D. Solar biofuels production with microalgae. Appl Energy. 2016;179:136–45.

    Article  CAS  Google Scholar 

  6. Viswanathan K, Wang S. Experimental investigation on the application of preheated fish oil ethyl ester as a fuel in diesel engine. Fuel. 2021;285: 119244.

    Article  CAS  Google Scholar 

  7. Cao B, Jiang D, Zheng Y, Rupani PF, Yuan C, Yamin H, Chen H, Li C, Xun H, Wang S, et al. Evaluation of biochar-derived carbocatalysts for pyrolytic conversion of sawdust: life cycle assessment towards monophenol production. Fuel. 2022;330: 125476.

    Article  CAS  Google Scholar 

  8. Uddin MN, Techato K, Taweekun J, Rahman MM, Rasul MG, Mahlia TMI, Ashrafur SM. An overview of recent developments in biomass pyrolysis technologies. Energies. 2018;11(11):3115.

    Article  CAS  Google Scholar 

  9. Guillain M, Fairouz K, Mar SR, Monique F, Jacques L. Attrition-free pyrolysis to produce bio-oil and char. Bioresour Technol. 2009;100(23):6069–75.

    Article  CAS  Google Scholar 

  10. Abnisa F, Daud WMAW. A review on co-pyrolysis of biomass: an optional technique to obtain a high-grade pyrolysis oil. Energy Convers Manage. 2014;87:71–85.

    Article  CAS  Google Scholar 

  11. Kalogirou SA. Solar thermal collectors and applications. Progress Energy Combust Sci. 2004;30(3):231–95.

    Article  CAS  Google Scholar 

  12. Wong SL, Ngadi N, Abdullah TAT, Inuwa IM. Current state and future prospects of plastic waste as source of fuel: a review. Renew Sustain Energy Rev. 2015;50:1167–80.

    Article  CAS  Google Scholar 

  13. Lopez G, Artetxe M, Amutio M, Alvarez J, Bilbao J, Olazar M. Recent advances in the gasification of waste plastics. a critical overview. Renew Sustain Energy Rev. 2018;82:576–96.

    Article  CAS  Google Scholar 

  14. Bridgwater AV, Meier D, Radlein D. An overview of fast pyrolysis of biomass. Org Geochem. 1999;30(12):1479–93.

    Article  CAS  Google Scholar 

  15. Vitolo S, Seggiani M, Frediani P, Ambrosini G. Catalytic upgrading of pyrolytic oils to fuel over different zeolites. Fuel. 1999;78(10):1147–59.

    Article  CAS  Google Scholar 

  16. Parihar MF, Kamil M, Goyal HB, Gupta AK, Bhatnagar AK. An experimental study on pyrolysis of biomass. Process Saf Environ Prot. 2007;85(5):458–65.

    Article  CAS  Google Scholar 

  17. Qiang L, Li W-Z, Zhu X-F. Overview of fuel properties of biomass fast pyrolysis oils. Energy Convers Manage. 2009;50(5):1376–83.

    Article  Google Scholar 

  18. Hew KL, Tamidi AM, Yusup S, Lee KT, Ahmad MM. Catalytic cracking of bio-oil to organic liquid product (olp). Bioresour Technol. 2010;101(22):8855–8.

    Article  CAS  PubMed  Google Scholar 

  19. Zhang Q, Chang J, Wang T, Ying X. Review of biomass pyrolysis oil properties and upgrading research. Energy Convers Manage. 2007;48(1):87–92.

    Article  CAS  Google Scholar 

  20. Scheirs J. Overview of commercial pyrolysis processes for waste plastics. Feedstock recycling and pyrolysis of waste plastics: converting waste plastics into diesel and other fuels, 2006; 381–433.

  21. Sapariya DD, Dr. Umang J. A review on thermochemical biomass gasification techniques for bioenergy production. Energy Sources, Part A: Recovery, Util, Environ Eff. 2021. https://doi.org/10.1080/15567036.2021.2000521.

    Article  Google Scholar 

  22. Gad MS, Panchal H, Ağbulut Ü. Waste to energy: an experimental comparison of burning the waste-derived bio-oils produced by transesterification and pyrolysis methods. Energy. 2022;242: 122945.

    Article  CAS  Google Scholar 

  23. Joshi N, Lawal A. Hydrodeoxygenation of pyrolysis oil in a microreactor. Chem Eng Sci. 2012;74:1–8.

    Article  CAS  Google Scholar 

  24. Toba M, Abe Y, Kuramochi H, Osako M, Mochizuki T, Yoshimura Y. Hydrodeoxygenation of waste vegetable oil over sulfide catalysts. Catal Today. 2011;164(1):533–7.

    Article  CAS  Google Scholar 

  25. Martínez JD, Veses A, Mastral AM, Murillo R, Navarro MV, Puy N, Artigues A, Bartrolí J, García T. Co-pyrolysis of biomass with waste tyres: upgrading of liquid bio-fuel. Fuel Process Technol. 2014;119:263–71.

    Article  Google Scholar 

  26. Önal E, Uzun BB, Pütün AE. Bio-oil production via co-pyrolysis of almond shell as biomass and high density polyethylene. Energy convers manage. 2014;78:704–10.

    Article  Google Scholar 

  27. Cao B, Xia Z, Wang S, Abomohra AE-F, Cai N, Yamin H, Yuan C, Lili Qian L, Liu XL, et al. A study on catalytic co-pyrolysis of cellulose with seaweeds polysaccharides over zsm-5: towards high-quality biofuel production. J Anal Appl Pyrolysis. 2018;134:526–35.

    Article  CAS  Google Scholar 

  28. Wang S, Yamin H, He Z, Wang Q, Shannan X. Study of pyrolytic mechanisms of seaweed based on different components (soluble polysaccharides, proteins, and ash). J Renew Sustain Energy. 2017;9(2): 023102.

    Article  Google Scholar 

  29. Kuppens T, Cornelissen T, Carleer R, Yperman J, Schreurs S, Jans M, Thewys T. Economic assessment of flash co-pyrolysis of short rotation coppice and biopolymer waste streams. J Environ Manage. 2010;91(12):2736–47.

    Article  CAS  PubMed  Google Scholar 

  30. Bach Q-V, Chen W-H. Pyrolysis characteristics and kinetics of microalgae via thermogravimetric analysis (tga): a state-of-the-art review. Bioresour Technol. 2017;246:88–100.

    Article  CAS  PubMed  Google Scholar 

  31. Burra KG, Gupta AK. Synergistic effects in steam gasification of combined biomass and plastic waste mixtures. Appl Energy. 2018;211:230–6.

    Article  CAS  Google Scholar 

  32. Cao B, Wang S, Yamin H, Abomohra AE-F, Qian L, He Z, Wang Q, Uzoejinwa BB, Esakkimuthu S. Effect of washing with diluted acids on enteromorpha clathrata pyrolysis products: towards enhanced bio-oil from seaweeds. Renew Energy. 2019;138:29–38.

    Article  CAS  Google Scholar 

  33. Yamin H, Shuang W, Qian W, Zhixia H, Xiaochi L, Shannan X, Hengsong J, Yun L. Effect of different pretreatments on the thermal degradation of seaweed biomass. Proc Combust Inst. 2017;36(2):2271–81.

    Article  Google Scholar 

  34. Cao B, Sun Y, Guo J, Wang S, Yuan J, Esakkimuthu S, Uzoejinwa BB, Yuan C, Abomohra AE-F, Qian L, et al. Synergistic effects of co-pyrolysis of macroalgae and polyvinyl chloride on bio-oil/bio-char properties and transferring regularity of chlorine. Fuel. 2019;246:319–29.

    Article  CAS  Google Scholar 

  35. Wang S, Wang Q, Jiang X, Han X, Ji H. Compositional analysis of bio-oil derived from pyrolysis of seaweed. Energy Convers Manage. 2013;68:273–80.

    Article  CAS  Google Scholar 

  36. Wei M, Marrakchi F, Yuan C, Cheng X, Jiang D, Zafar FF, Yanxia F, Wang S. Adsorption modeling, thermodynamics, and dft simulation of tetracycline onto mesoporous and high-surface-area naoh-activated macroalgae carbon. J Hazard Mater. 2022;425: 127887.

    Article  CAS  PubMed  Google Scholar 

  37. Wang S, Jiang XM, Wang N, Yu LJ, Li Z, He PM. Research on pyrolysis characteristics of seaweed. Energy & Fuels. 2007;21(6):3723–9.

    Article  CAS  Google Scholar 

  38. Wang S, Wang Q, Hu YM, Xu SN, He ZX, Ji HS. Study on the synergistic co-pyrolysis behaviors of mixed rice husk and two types of seaweed by a combined tg-ftir technique. J Anal Appl Pyrolysis. 2015;114:109–18.

    Article  CAS  Google Scholar 

  39. Wang S, Zhao S, Uzoejinwa BB, Zheng A, Wang Q, Huang J, Abomohra AE-F. A state-of-the-art review on dual purpose seaweeds utilization for wastewater treatment and crude bio-oil production. Energy Convers Manage. 2020;222: 113253.

    Article  CAS  Google Scholar 

  40. Wang S, Shang H, Abomohra AE-F, Wang Q. One-step conversion of microalgae to alcohols and esters through co-pyrolysis with biodiesel-derived glycerol. Energy Convers Manage. 2019;198: 111792.

    Article  CAS  Google Scholar 

  41. Yamin H, Xie K, Wang H, Yuan C, Cao B, Qian L, Wang S, Zafar FF, Ding K, Wang Q. Preparation and property of n-doped porous carbon material by one-step pyrolysis of protein-rich algal biomass. J Anal Appl Pyrolysis. 2021;157: 105221.

    Article  Google Scholar 

  42. Shuanhu H, Barati B, Odey EA, Wang S, Xun H, Abomohra AE-F, Lakshmikandan M, Yerkebulan M, Esakkimuthu S, Shang H. Experimental study and economic feasibility analysis on the production of bio-oil by catalytic cracking of three kinds of microalgae. J Anal Appl Pyrolysis. 2020;149: 104835.

    Article  Google Scholar 

  43. Hong Yu, Chen W, Luo X, Pang C, Lester E, Tao W. Microwave-enhanced pyrolysis of macroalgae and microalgae for syngas production. Bioresour Technol. 2017;237:47–56.

    Article  CAS  PubMed  Google Scholar 

  44. Kostas ET, Williams OSA, Duran-Jimenez G, Tapper AJ, Cooper M, Meehan R, Robinson JP. Microwave pyrolysis of laminaria digitata to produce unique seaweed-derived bio-oils. Biomass and Bioenergy. 2019;125:41–9.

    Article  CAS  Google Scholar 

  45. Michalak I, Baśladyńska S, Mokrzycki J, Rutkowski P. Biochar from a freshwater macroalga as a potential biosorbent for wastewater treatment. Water. 2019;11(7):1390.

    Article  CAS  Google Scholar 

  46. Tang Z, Chen W, Junhao H, Li S, Chen Y, Yang H, Chen H. Co-pyrolysis of microalgae with low-density polyethylene (ldpe) for deoxygenation and denitrification. Bioresour Technol. 2020;311: 123502.

    Article  CAS  PubMed  Google Scholar 

  47. Wang S, Yamin H, Wang Q, Shannan X, Lin X, Ji H, Zhang Z. Tg-ftir-ms analysis of the pyrolysis of blended seaweed and rice husk. J Therm Anal Calorim. 2016;126(3):1689–702.

    Article  CAS  Google Scholar 

  48. Peng L, Huang Q, Thanos BAC, Yong C, Jianhua Y. Synergistic effects on char and oil produced by the co-pyrolysis of pine wood, polyethylene and polyvinyl chloride. Fuel. 2018;230:359–67.

    Article  Google Scholar 

  49. Sajdak M. Impact of plastic blends on the product yield from co-pyrolysis of lignin-rich materials. J Anal Appl Pyrolysis. 2017;124:415–25.

    Article  CAS  Google Scholar 

  50. Dinc G, Yel E. Self-catalyzing pyrolysis of olive pomace. J Anal Applied Pyrolysis. 2018;134:641–6.

    Article  CAS  Google Scholar 

  51. Oyedun AO, Tee CZ, Hanson S, Hui CW. Thermogravimetric analysis of the pyrolysis characteristics and kinetics of plastics and biomass blends. Fuel Process Technol. 2014;128:471–81.

    Article  CAS  Google Scholar 

  52. Çepelioğullar Ö, Pütün AE. Thermal and kinetic behaviors of biomass and plastic wastes in co-pyrolysis. Energy Convers Manage. 2013;75:263–70.

    Article  Google Scholar 

  53. Chen R, Zhang J, Lun L, Li Q, Zhang Y. Comparative study on synergistic effects in co-pyrolysis of tobacco stalk with polymer wastes: Thermal behavior, gas formation, and kinetics. Bioresour Technol. 2019;292: 121970.

    Article  PubMed  Google Scholar 

  54. Muneer B, Zeeshan M, Qaisar S, Razzaq M, Iftikhar H. Influence of in-situ and ex-situ hzsm-5 catalyst on co-pyrolysis of corn stalk and polystyrene with a focus on liquid yield and quality. J Clean Prod. 2019;237: 117762.

    Article  CAS  Google Scholar 

  55. Uzoejinwa BB, Cao B, Wang S, Xun H, Yamin H, Pan C, Li B, Anyadike CC, Asoiro FU, Oji NA, et al. Catalytic co-pyrolysis of macroalgal components with lignocellulosic biomass for enhanced biofuels and high-valued chemicals. Int J Energy Res. 2022;46(3):2674–97.

    Article  CAS  Google Scholar 

  56. Uzoejinwa BB, He X, Wang S, Abomohra AE-F, Yamin H, He Z, Wang Q. Co-pyrolysis of macroalgae and lignocellulosic biomass. J Therm Anal Calorim. 2019;136(5):2001–16.

    Article  CAS  Google Scholar 

  57. Yamin H, Wang H, Lakshmikandan M, Wang S, Wang Q, He Z, Abomohra AE-F. Catalytic co-pyrolysis of seaweeds and cellulose using mixed zsm-5 and mcm-41 for enhanced crude bio-oil production. J Therm Anal Calorim. 2021;143(1):827–42.

    Article  Google Scholar 

  58. Uzoejinwa BB, He X, Wang S, Abomohra AE-F, Yamin H, He Z, Wang Q. Co-pyrolysis of seaweeds with waste plastics: modeling and simulation of effects of co-pyrolysis parameters on yields, and optimization studies for maximum yield of enhanced biofuels. Energy Sources, Part A: Recovery, Util Environ Eff. 2020;42(8):954–78.

    Article  CAS  Google Scholar 

  59. Suriapparao DV, Boruah B, Raja D, Vinu R. Microwave assisted co-pyrolysis of biomasses with polypropylene and polystyrene for high quality bio-oil production. Fuel Process Technol. 2018;175:64–75.

    Article  CAS  Google Scholar 

  60. Chen B, Li Y, Yuan M, Shen J, Wang S, Tong J, Guo Y. Study of the co-pyrolysis characteristics of oil shale with wheat straw based on the hierarchical collection. Energy. 2022;239: 122144.

    Article  CAS  Google Scholar 

  61. Hassan H, Lim JK, Hameed BH. Recent progress on biomass co-pyrolysis conversion into high-quality bio-oil. Bioresour Technol. 2016;221:645–55.

    Article  CAS  PubMed  Google Scholar 

  62. Uzoejinwa BB, He X, Wang S, Abomohra AE-F, Yamin H, Wang Q. Co-pyrolysis of biomass and waste plastics as a thermochemical conversion technology for high-grade biofuel production: recent progress and future directions elsewhere worldwide. Energy Convers Manage. 2018;163:468–92.

    Article  CAS  Google Scholar 

  63. Zheng Y, Tao L, Yang X, Huang Y, Liu C, Zheng Z. Study of the thermal behavior, kinetics, and product characterization of biomass and low-density polyethylene co-pyrolysis by thermogravimetric analysis and pyrolysis-gc/ms. J Anal Appl Pyrolysis. 2018;133:185–97.

    Article  CAS  Google Scholar 

  64. Chin BLF, Yusup S, AlShoaibi A, Kannan P, Srinivasakannan C, Sulaiman SA. Kinetic studies of co-pyrolysis of rubber seed shell with high density polyethylene. Energy Convers Manage. 2014;87:746–53.

    Article  CAS  Google Scholar 

  65. Chen W, Shi S, Zhang J, Chen M, Zhou X. Co-pyrolysis of waste newspaper with high-density polyethylene: synergistic effect and oil characterization. Energy Convers Manage. 2016;112:41–8.

    Article  CAS  Google Scholar 

  66. Yamin H, Wang S, Li J, Wang Q, He Z, Feng Y, Abomohra AE-F, Afonaa-Mensah S, Hui C. Co-pyrolysis and co-hydrothermal liquefaction of seaweeds and rice husk: comparative study towards enhanced biofuel production. J Anal Appl Pyrolysis. 2018;129:162–70.

    Article  Google Scholar 

  67. Wang S, Jiang D, Cao B, Yamin H, Yuan C, Wang Q, He Z, Hui C-W, Abomohra AE-F, Liu X, et al. Study on the interaction effect of seaweed bio-coke and rice husk volatiles during co-pyrolysis. J Anal Appl Pyrolysis. 2018;132:111–22.

    Article  CAS  Google Scholar 

  68. Shannan X, Uzoejinwa BB, Wang S, Yamin H, Lili Qian L, Liu BL, He Z, Wang Q, Abomohra AE-F, et al. Study on co-pyrolysis synergistic mechanism of seaweed and rice husk by investigation of the characteristics of char/coke. Renew Energy. 2019;132:527–42.

    Article  Google Scholar 

  69. Lorenzetti C, Conti R, Fabbri D, Yanik J. A comparative study on the catalytic effect of h-zsm5 on upgrading of pyrolysis vapors derived from lignocellulosic and proteinaceous biomass. Fuel. 2016;166:446–52.

    Article  CAS  Google Scholar 

  70. Sophonrat N, Sandström L, Zaini IN, Yang W. Stepwise pyrolysis of mixed plastics and paper for separation of oxygenated and hydrocarbon condensates. Appl Energy. 2018;229:314–25.

    Article  CAS  Google Scholar 

  71. Chattopadhyay J, Pathak TS, Srivastava R, Singh AC. Catalytic co-pyrolysis of paper biomass and plastic mixtures (hdpe (high density polyethylene), pp (polypropylene) and pet (polyethylene terephthalate)) and product analysis. Energy. 2016;103:513–21.

    Article  CAS  Google Scholar 

  72. Çepelioğullar Ö, Pütün AE. Products characterization study of a slow pyrolysis of biomass-plastic mixtures in a fixed-bed reactor. J Anal Appl Pyrolysis. 2014;110:363–74.

    Article  Google Scholar 

  73. Xue Y, Zhou S, Brown RC, Kelkar A, Bai X. Fast pyrolysis of biomass and waste plastic in a fluidized bed reactor. Fuel. 2015;156:40–6.

    Article  CAS  Google Scholar 

  74. Van Nguyen Q, Choi YS, Choi SK, Jeong YW, Kwon YS. Improvement of bio-crude oil properties via co-pyrolysis of pine sawdust and waste polystyrene foam. J Environ Manage. 2019;237:24–9.

    Article  PubMed  Google Scholar 

  75. Quan B, Chen K, Xie W, Liu Y, Cao M, Kong X, Chu Q, Mao H. Hydrocarbon rich bio-oil production, thermal behavior analysis and kinetic study of microwave-assisted co-pyrolysis of microwave-torrefied lignin with low density polyethylene. Bioresour Technol. 2019;291: 121860.

    Article  Google Scholar 

  76. Dai M, Hao X, Zhaosheng Yu, Fang S, Chen L, Wenlu G, Ma X. Microwave-assisted fast co-pyrolysis behaviors and products between microalgae and polyvinyl chloride. Appl Therm Eng. 2018;136:9–15.

    Article  Google Scholar 

  77. Bu Q, Liu Y, Liang J, Morgan HM Jr, Yan L, Xu F, Mao H. Microwave-assisted co-pyrolysis of microwave torrefied biomass with waste plastics using zsm-5 as a catalyst for high quality bio-oil. J Anal Appl Pyrolysis. 2018;134:536–43.

    Article  CAS  Google Scholar 

  78. Arregi A, Amutio M, Lopez G, Artetxe M, Alvarez J, Bilbao J, Olazar M. Hydrogen-rich gas production by continuous pyrolysis and in-line catalytic reforming of pine wood waste and hdpe mixtures. Energy Convers Manage. 2017;136:192–201.

    Article  CAS  Google Scholar 

  79. Dongxue Yu, Hui H, Li S. Two-step catalytic co-pyrolysis of walnut shell and ldpe for aromatic-rich oil. Energy Convers Manage. 2019;198: 111816.

    Article  Google Scholar 

  80. Mishra RK, Mohanty K. Pyrolysis kinetics and thermal behavior of waste sawdust biomass using thermogravimetric analysis. Bioresour Technol. 2018;251:63–74.

    Article  CAS  PubMed  Google Scholar 

  81. Chattopadhyay J, Kim C, Kim R, Pak D. Thermogravimetric characteristics and kinetic study of biomass co-pyrolysis with plastics. Korean J Chem Eng. 2008;25(5):1047–53.

    Article  CAS  Google Scholar 

  82. Meng A, Chen S, Long Y, Zhou H, Zhang Y, Li Q. Pyrolysis and gasification of typical components in wastes with macro-tga. Waste Manage. 2015;46:247–56.

    Article  CAS  Google Scholar 

  83. Jayaraman K, Kok MV, Gokalp I. Thermogravimetric and mass spectrometric (tg-ms) analysis and kinetics of coal-biomass blends. Renewa Energy. 2017;101:293–300.

    Article  CAS  Google Scholar 

  84. Singh S, Chunfei W, Williams PT. Pyrolysis of waste materials using tga-ms and tga-ftir as complementary characterisation techniques. J Anal Appl Pyrolysis. 2012;94:99–107.

    Article  CAS  Google Scholar 

  85. Özsin G, Pütün AE. Tga/ms/ft-ir study for kinetic evaluation and evolved gas analysis of a biomass/pvc co-pyrolysis process. Energy Convers Manage. 2019;182:143–53.

    Article  Google Scholar 

  86. Wang S, Xia Z, Wang Q, He Z, Li H. Mechanism research on the pyrolysis of seaweed polysaccharides by py-gc/ms and subsequent density functional theory studies. J Anal Appl Pyrolysis. 2017;126:118–31.

    Article  CAS  Google Scholar 

  87. Meng X, Zhang H, Liu C, Xiao R. Comparison of acids and sulfates for producing levoglucosan and levoglucosenone by selective catalytic fast pyrolysis of cellulose using py-gc/ms. Energy & Fuels. 2016;30(10):8369–76.

    Article  CAS  Google Scholar 

  88. Murillo JD, Ware EA, Biernacki JJ. Characterization of milling effects on the physical and chemical nature of herbaceous biomass with comparison of fast pyrolysis product distributions using py-gc/ms. J Anal Appl Pyrolysis. 2014;108:234–47.

    Article  CAS  Google Scholar 

  89. Ma J, Liu J, Jiang X, Chen B. Improved cpd model coupled with lattice vacancy evolution. Combust Flame. 2022;241: 112076.

    Article  CAS  Google Scholar 

  90. Yang X, Yuan C, He S, Jiang D, Cao B, Wang S. Machine learning prediction of specific capacitance in biomass derived carbon materials: effects of activation and biochar characteristics. Fuel. 2023;331: 125718.

    Article  CAS  Google Scholar 

  91. Ungerer PH, Pelet R. Extrapolation of the kinetics of oil and gas formation from laboratory experiments to sedimentary basins. Nature. 1987;327(6117):52–4.

    Article  CAS  Google Scholar 

  92. Vyazovkin S, Burnham AK, Favergeon L, Koga N, Moukhina E, Pérez-Maqueda LA, Sbirrazzuoli N. Ictac kinetics committee recommendations for analysis of multi-step kinetics. Thermochim Acta. 2020;689: 178597.

    Article  CAS  Google Scholar 

  93. Niksa S, Kerstein AR. The distributed-energy chain model for rapid coal devolatilization kinetics. part i: formulation. Combust Flame. 1986;66(2):95–109.

    Article  CAS  Google Scholar 

  94. Niksa S, Kerstein AR. Flashchain theory for rapid coal devolatilization kinetics. 1. formulation. Energy & Fuels. 1991;5(5):647–65.

    Article  CAS  Google Scholar 

  95. Solomon PR, Hamblen DG, Carangelo RM, Serio MA, Deshpande GV. General model of coal devolatilization. Energy & Fuels. 1988;2(4):405–22.

    Article  CAS  Google Scholar 

  96. Grant DM, Pugmire RJ, Fletcher TH, Kerstein AR. Chemical model of coal devolatilization using percolation lattice statistics. Energy & Fuels. 1989;3(2):175–86.

    Article  CAS  Google Scholar 

  97. Fletcher TH, Kerstein AR, Pugmire RJ, Grant DM. Chemical percolation model for devolatilization. 2. temperature and heating rate effects on product yields. Energy & Fuels. 1990;4(1):54–60.

    Article  CAS  Google Scholar 

  98. Chen B, Yuan M, You Y, Wang S, Shen J, Han X, Jiang X, Guo Y. Simulation analysis of co-pyrolysis of oil shale and wheat straw based on the combination of chain reaction kinetics and improved cpd models. Energy Convers Manage. 2021;243: 114405.

    Article  CAS  Google Scholar 

  99. Niksa S. Bio-flashchain® theory for rapid devolatilization of biomass 1 lignin devolatilization. Fuel. 2020;263: 116649.

    Article  CAS  Google Scholar 

  100. Sommariva S, Maffei T, Migliavacca G, Faravelli T, Ranzi E. A predictive multi-step kinetic model of coal devolatilization. Fuel. 2010;89(2):318–28.

    Article  CAS  Google Scholar 

  101. Wang S, Xia Z, Yamin H, He Z, Uzoejinwa BB, Wang Q, Cao B, Shanna X. Co-pyrolysis mechanism of seaweed polysaccharides and cellulose based on macroscopic experiments and molecular simulations. Bioresour Technol. 2017;228:305–14.

    Article  CAS  PubMed  Google Scholar 

  102. Bin H, Zhang B, Xie W, Jiang X, Liu J, Qiang L. Recent progress in quantum chemistry modeling on the pyrolysis mechanisms of lignocellulosic biomass. Energy & Fuels. 2020;34(9):10384–440.

    Article  Google Scholar 

  103. Jiang D, Li H, Wang S, Cheng X, Bartocci P, Fantozzi F. Insight the co2 adsorption onto biomass-pyrolysis derived char via experimental analysis coupled with dft calculation. Fuel. 2023;332: 125948.

    Article  CAS  Google Scholar 

  104. Schrödinger E. An undulatory theory of the mechanics of atoms and molecules. Phys Rev. 1926;28(6):1049.

    Article  Google Scholar 

  105. Head-Gordon M. Quantum chemistry and molecular processes. J Phys Chem. 1996;100(31):13213–25.

    Article  CAS  Google Scholar 

  106. Kumar A, Cappellini G, Delogu F. Electronic and optical properties of chromophores from hexeneuronic acids. Cellulose. 2019;26(3):1489–501.

    Article  CAS  Google Scholar 

  107. Yuan C, Jiang D, Wang S, Barati B, Gong X, Cao B, Zhang RP, Zhang C, Odey EA. Study on catalytic pyrolysis mechanism of seaweed polysaccharide monomer. Combust Flame. 2020;218:1–11.

    Article  CAS  Google Scholar 

  108. Yang X, Jiang D, Cheng X, Marrakchi F, Yuan C, He Z, Wang S, Zheng A. Nitrogen transfer mechanism research on the co-pyrolysis macroalgae with polyethylene. Sustain Energy Technol Assess. 2022;51: 101886.

    Google Scholar 

  109. Yuan C, Abomohra AE-F, Wang S, Liu Q, Zhao S, Cao B, Xun H, Marrakchi F, He Z, Yamin H. High-grade biofuel production from catalytic pyrolysis of waste clay oil using modified activated seaweed carbon-based catalyst. J Clean Prod. 2021;313: 127928.

    Article  CAS  Google Scholar 

  110. Wang S, Yamin H, Uzoejinwa BB, Cao B, He Z, Wang Q, Shannan X. Pyrolysis mechanisms of typical seaweed polysaccharides. J Anal Appl Pyrolysis. 2017;124:373–83.

    Article  CAS  Google Scholar 

  111. Zhenyi D, Bing H, Ma X, Cheng Y, Liu Y, Lin X, Wan Y, Lei H, Chen P, Ruan R. Catalytic pyrolysis of microalgae and their three major components: carbohydrates, proteins, and lipids. Bioresour Technol. 2013;130:777–82.

    Article  Google Scholar 

  112. Lee HW, Choi SJ, Park SH, Jeon J-K, Jung S-C, Kim SC, Park Y-K. Pyrolysis and co-pyrolysis of laminaria japonica and polypropylene over mesoporous al-sba-15 catalyst. Nanoscale Res Lett. 2014;9(1):1–8.

    Article  Google Scholar 

  113. Kositkanawuth K, Bhatt A, Sattler M, Dennis B. Renewable energy from waste: investigation of co-pyrolysis between sargassum macroalgae and polystyrene. Energy & Fuels. 2017;31(5):5088–96.

    Article  CAS  Google Scholar 

  114. Chen W, Li K, Xia M, Yang H, Yingquan Chen X, Chen QC, Chen H. Catalytic deoxygenation co-pyrolysis of bamboo wastes and microalgae with biochar catalyst. Energy. 2018;157:472–82.

    Article  CAS  Google Scholar 

  115. Duan P, Jin B, Yuping X, Wang F. Co-pyrolysis of microalgae and waste rubber tire in supercritical ethanol. Chem Eng J. 2015;269:262–71.

    Article  CAS  Google Scholar 

  116. Tang Z, Chen W, Chen Y, Yang H, Chen H. Co-pyrolysis of microalgae and plastic: characteristics and interaction effects. Bioresour Technol. 2019;274:145–52.

    Article  CAS  PubMed  Google Scholar 

  117. Yang C, Li R, Zhang B, Qiu Q, Wang B, Yang H, Ding Y, Wang C. Pyrolysis of microalgae: a critical review. Fuel Process Technol. 2019;186:53–72.

    Article  CAS  Google Scholar 

  118. Xie Q, Addy M, Liu S, Zhang B, Cheng Y, Wan Y, Li Y, Liu Y, Lin X, Chen P, et al. Fast microwave-assisted catalytic co-pyrolysis of microalgae and scum for bio-oil production. Fuel. 2015;160:577–82.

    Article  CAS  Google Scholar 

  119. Lee XJ, Ong HC, Gan YY, Chen W-H, Mahlia TMI. State of art review on conventional and advanced pyrolysis of macroalgae and microalgae for biochar, bio-oil and bio-syngas production. Energy Convers Manage. 2020;210: 112707.

    Article  CAS  Google Scholar 

  120. Azizi K, Moraveji MK, Najafabadi HA. Simultaneous pyrolysis of microalgae c. vulgaris, wood and polymer: the effect of third component addition. Bioresour Technol. 2018;247:66–72.

    Article  CAS  PubMed  Google Scholar 

  121. Shannan X, Cao B, Uzoejinwa BB, Odey EA, Wang S, Shang H, Li C, Yamin H, Wang Q, Nwakaire JN. Synergistic effects of catalytic co-pyrolysis of macroalgae with waste plastics. Process Saf Environ Prot. 2020;137:34–48.

    Article  Google Scholar 

  122. Xiu S, Shahbazi A. Bio-oil production and upgrading research: a review. Renew Sustain Energy Rev. 2012;16(7):4406–14.

    Article  CAS  Google Scholar 

  123. Azizi K, Moraveji MK, Najafabadi HA. A review on bio-fuel production from microalgal biomass by using pyrolysis method. Renew Sustain Energy Rev. 2018;82:3046–59.

    Article  CAS  Google Scholar 

  124. Yang Y, Zhang Y, Omairey E, Cai J, Fan G, Bridgwater AV. Intermediate pyrolysis of organic fraction of municipal solid waste and rheological study of the pyrolysis oil for potential use as bio-bitumen. J Clean Prod. 2018;187:390–9.

    Article  CAS  Google Scholar 

  125. Bridgwater AV. Review of fast pyrolysis of biomass and product upgrading. Biomass and Bioenergy. 2012;38:68–94.

    Article  CAS  Google Scholar 

  126. Saber M, Nakhshiniev B, Yoshikawa K. A review of production and upgrading of algal bio-oil. Renew Sustaina Energy Rev. 2016;58:918–30.

    Article  CAS  Google Scholar 

  127. Motasemi F, Afzal MT. A review on the microwave-assisted pyrolysis technique. Renew Sustain Energy Rev. 2013;28:317–30.

    Article  CAS  Google Scholar 

  128. Jiacheng S, Omid N, Ondřej M. A state-of-the-art review on algae pyrolysis for bioenergy and biochar production. Bioresour Technol. 2021;346: 126258.

    Google Scholar 

  129. Cao L, Zeng J, Wang B, Zhu T, Zhang JZH. Ab initio neural network md simulation of thermal decomposition of a high energy material cl-20/tnt. Phys Chem Chem Phys. 2022;24(19):11801–11.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by Shanghai Sailing Plan and National Natural Science Foundation of China (19YF1418000, 51704194 and 51766004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin Chen.

Ethics declarations

Conflict of interest

The author declares that he has no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, B., Yang, Y. Co-pyrolysis of algae with other carbon-based materials: a review on synergistic products and molecular reaction pathway. J Therm Anal Calorim 148, 2233–2249 (2023). https://doi.org/10.1007/s10973-022-11895-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-022-11895-3

Keywords

Navigation