Skip to main content
Log in

Fabrication of Ni-doped synergistic intumescent flame-retarding silicone rubber system with superior flame retardancy and water resistance

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Aimed at settling the bottleneck problems of low flame retardancy for silicone rubber (SR), a modified melamine polyphosphate (H-Ni@MPP) was successfully obtained by successively introducing Ni2+ and silicon resin via a facile approach. Simultaneously, expandable graphite (EG) was further taken advantage of improving the flame-retardant ability. Surprisingly, the highest flame retardancy of SR/H-Ni@MPP/EG composites could be achieved with 49.5% LOI value and UL-94 V-0 rating when the loading was 40 phr. Moreover, flame retardancy after water treatment was dramatically maintained, revealing that the water resistance of SR composites was enhanced. The effect of H-Ni@MPP/EG ratio on the flame retardancy of SR was systematically investigated. Based on the analysis for remnants, the effective flame-retarding mechanism of SR composites can be ascribed to the physical–chemical intumescence, graphitized char layer and Ni-catalyzed process. Therefore, this strategy has provided an effective route for realizing the goal in flame-retarding SR composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Zhang C, Wang J, Song S. Preparation of a novel type of flame retardant diatomite and its application in silicone rubber composites. Adv Powder Technol. 2019;30:1567–75. https://doi.org/10.1016/j.apt.2019.05.002.

    Article  CAS  Google Scholar 

  2. Yan H, Dai X, Ruan K, Zhang S, Shi X, Guo Y, et al. Flexible thermally conductive and electrically insulating silicone rubber composite films with BNNS@Al2O3 fillers. Adv Compos Hybrid Mater. 2021;4:36–50. https://doi.org/10.1007/s42114-021-00208-1.

    Article  CAS  Google Scholar 

  3. Hermansson A, Hjertberg T, Sultan BÅ. The flame retardant mechanism of polyolefins modified with chalk and silicone elastomer. Fire Mater. 2003;27(2):51–70. https://doi.org/10.1002/fam.817.

    Article  CAS  Google Scholar 

  4. Zhang Z, Liu Y, Yang K, Cheng D, Li S, Li Z. Reversible thermochromic microencapsulated phase change materials for enhancing functionality of silicone rubber materials. Mater Chem Phys. 2022;290: 126564. https://doi.org/10.1016/j.matchemphys.2022.126564.

    Article  CAS  Google Scholar 

  5. Rahimi-Aghdam T, Shariatinia Z, Hakkarainen M, Haddadi-Asl V. Nitrogen and phosphorous doped graphene quantum dots: Excellent flame retardants and smoke suppressants for polyacrylonitrile nanocomposites. J Hazard Mater. 2020;381: 121013. https://doi.org/10.1016/j.jhazmat.2019.121013.

    Article  CAS  PubMed  Google Scholar 

  6. Qiu J, Wu T, Qu J. Fabrication of iron oxide nanoparticle decorated boron nitride nanosheet for flame-retarding silicone rubber. Mater Lett. 2021;283: 128712. https://doi.org/10.1016/j.matlet.2020.128712.

    Article  CAS  Google Scholar 

  7. Sarath P, Biswal M, Mohanty S, Nayak SK. Effect of silicone rubber based impact modifier on mechanical and flammability properties of plastics recovered from waste mobile phones. J Clean Prod. 2018;171:209–19. https://doi.org/10.1016/j.jclepro.2017.10.024.

    Article  CAS  Google Scholar 

  8. Xu T, Wang S, Wang H, Xu T. Inhibitory effects of developed composite flame retardant on bituminous combustion and volatile emissions. J Clean Prod. 2021;279: 123538. https://doi.org/10.1016/j.jclepro.2020.123538.

    Article  CAS  Google Scholar 

  9. Kim Y, Hwang S, Choi J, Lee J, Yu K, Baeck SH, et al. Valorization of fly ash as a harmless flame retardant via carbonation treatment for enhanced fire-proofing performance and mechanical properties of silicone composites. J Hazard Mater. 2021;404: 124202. https://doi.org/10.1016/j.jhazmat.2020.124202.

    Article  CAS  PubMed  Google Scholar 

  10. Ys A, Yw A, Yu YB, Hj A, Yq A, Bsu C, et al. Development of environmentally friendly flame retardant to achieve low flammability for asphalt binder used in tunnel pavements. J Clean Prod. 2020;257: 120487. https://doi.org/10.1016/j.jclepro.2020.120487.

    Article  CAS  Google Scholar 

  11. Hong L, Hu X. Mechanical and flame retardant properties and microstructure of expandable graphite/silicone rubber composites. J Macromol Sci B. 2016;55(2):175–87. https://doi.org/10.1080/00222348.2015.1138029.

    Article  CAS  Google Scholar 

  12. Qiu J, Lai X, Li H, Gao J, Zeng X, Liao X. Facile fabrication of a novel polyborosiloxane-decorated layered double hydroxide for remarkably reducing fire hazard of silicone rubber. Compos Part B-Eng. 2019;175: 107068. https://doi.org/10.1016/j.compositesb.2019.107068.

    Article  CAS  Google Scholar 

  13. Pang Q, Kang F, Deng J, Lei L, Lu J, Shao S. Flame retardancy effects between expandable graphite and halloysite nanotubes in silicone rubber foam. RSC Adv. 2021;11:13821–31. https://doi.org/10.1039/D1RA01409A.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Zhao X, Wang D, Alonso JP, Wang D. Inclusion complex between beta-cyclodextrin and phenylphosphonicdiamide as novel bio-based flame retardant to epoxy: inclusion behavior, characterization and flammability. Mater Design. 2017;114:623–32. https://doi.org/10.1016/j.matdes.2016.11.093.

    Article  CAS  Google Scholar 

  15. Dong X, Ma Y, Fan X, Zhao S, Xu Y, Liu S, et al. Nickel modified two-dimensional bimetallic nanosheets, M(OH)(OCH3) (M=Co, Ni), for improving fire retardancy and smoke suppression of epoxy resin. Polymer. 2021;35: 124263. https://doi.org/10.1016/j.polymer.2021.124263.

    Article  CAS  Google Scholar 

  16. Wu X, Hong X, Luo Z, Hui KS, Chen H, Wu J, et al. The effects of surface modification on the supercapacitive behaviors of novel mesoporous carbon derived from rod-like hydroxyapatite template. Electrochim Acta. 2013;89:400–6. https://doi.org/10.1016/j.electacta.2012.11.067.

    Article  CAS  Google Scholar 

  17. Cabrera-Álvarez EN, Ramos-deValle LF, Sánchez-Valdes S, Candia-García A, Soriano-Corral F, Ramírez-Vargas E, et al. Study of the silane modification of magnesium hydroxide and their effects on the flame retardant and tensile properties of high density polyethylene nanocomposites. Polym Composite. 2013;35(6):1060–9. https://doi.org/10.1002/pc.22753.

    Article  CAS  Google Scholar 

  18. Pang Y, Tian Y, Shi X. Synergism between hydrotalcite and silicate-modified expandable graphite on ethylene vinyl acetate copolymer combustion behavior. J Appl Polym Sci. 2017;134(12):44634. https://doi.org/10.1002/app.44634.

    Article  CAS  Google Scholar 

  19. Yuan B, Chen L, Bao C, Qian X, Song L, Tai Q, et al. Design of artificial nacre-like hybrid films as shielding to mitigate electromagnetic pollution. Carbon. 2014;75:178–89. https://doi.org/10.1016/j.carbon.2014.03.051.

    Article  CAS  Google Scholar 

  20. Li J, Ke C, Xu L, Wang Y. Synergistic effect between a hyperbranched charring agent and ammonium polyphosphate on the intumescent flame retardance of acrylonitrile-butadiene-styrene polymer. Polym Degrad Stabil. 2012;97(7):1107–13. https://doi.org/10.1016/j.polymdegradstab.2012.04.005.

    Article  CAS  Google Scholar 

  21. Zhang L, Wu W, Li J, Wang Z, Wang L, Chen S. New insight into the preparation of flame-retardant thermoplastic polyether ester utilizing β-cyclodextrin as a charring agent. High Perform Polym. 2017;29(4):422–30. https://doi.org/10.1177/0954008316648004.

    Article  CAS  Google Scholar 

  22. Zheng Z, Liu Y, Zhang L, Wang H. Synergistic effect of expandable graphite and intumescent flame retardants on the flame retardancy and thermal stability of polypropylene. J Mater Sci. 2016;51:5857–71. https://doi.org/10.1007/s10853-016-9887-6.

    Article  CAS  Google Scholar 

  23. Zheng Z, Liu Y, Zhang L, Dai B, Yang X, Wang H. Fabrication of halogen-free ammonium phosphate with two components via a simple method and its flame retardancy in polypropylene composites. J Thermal Anal Calorim. 2017;127:2013–23. https://doi.org/10.1007/s10973-016-5779-x.

    Article  CAS  Google Scholar 

  24. Sun J, Yu Z, Wang X, Wu D. Synthesis and performance of cyclomatrix polyphosphazene derived from trispiro-cyclotriphosphazene as a halogen-free nonflammable material. ACS Sustainable Chem Eng. 2014;2(2):231–8. https://doi.org/10.1021/sc400283d.

    Article  CAS  Google Scholar 

  25. Wang X, Song L, Yang H, Lu H, Hu Y. Synergistic effect of graphene on antidripping and fire resistance of intumescent flame retardant poly(butylene succinate) composites. Ind Eng Chem Res. 2011;50(9):5376–83. https://doi.org/10.1021/ie102566y.

    Article  CAS  Google Scholar 

  26. Magdas DA, Cozar O, Chis V, Ardelean I, Vedeanu N. The structural dual role of Fe2O3 in some lead-phosphate glasses. Vib Spectrosc. 2008;48(2):251–4. https://doi.org/10.1016/j.vibspec.2008.02.016.

    Article  CAS  Google Scholar 

  27. Chen X, Chen X, Zhang F, Yang Z, Huang S. One-pot hydrothermal synthesis of reduced graphene oxide/carbon nanotube/α-Ni(OH)2 composites for high performance electrochemical supercapacitor. J Power Sources. 2013;243:555–61. https://doi.org/10.1016/j.jpowsour.2013.04.076.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported National Natural Science Foundation of China, China (grant number 52005050), Foundation of State Key Laboratory of Automotive Simulation and Control, China (grant number 20201105), Science and Technology Development Project of Jilin Province, China (grant number YDZJ202201ZYTS334) and Science and Technology Research Project of Education Department of Jilin Province, China (grant number JJKH20220679KJ).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zaihang Zheng.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chai, W., Su, X., Xia, Y. et al. Fabrication of Ni-doped synergistic intumescent flame-retarding silicone rubber system with superior flame retardancy and water resistance. J Therm Anal Calorim 148, 1827–1839 (2023). https://doi.org/10.1007/s10973-022-11865-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-022-11865-9

Keywords

Navigation