Skip to main content
Log in

Synthesis and thermal analysis of silicon-containing bis-phthalonitrile resin with enhanced solubility

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Silicon-containing bis-phthalonitrile (SiPN) resin has been synthesized via multi-step synthetic route and characterized through spectroscopic (1H, 13C NMR and FT-IR) and thermal methods. The curing behaviour of the resin has been studied using differential scanning calorimetry (DSC). The uncured resin showed melting peak at 421 K with curing onset at 477 K and curing exotherm peak appeared at 519 K and curing end-set at 573 K. The processing and the curing windows of resin were observed to be 62 K and 72 K respectively. The DSC analysis of cured resin showed no glass transition temperature up-to 623 K. The thermal stability of crosslinked resin was assessed via thermo-gravimetric analyser (TGA). The TGA analysis of cured resin displayed ~ 5% decomposition at 730 K and char yield of 68% at 1073 K under nitrogen atmosphere with limiting oxygen index (LOI) value of 44.7, calculated via empirical method using (Krevelen’s equation). The resin showed 0.12% moisture absorption of when immersed in water for 48 h.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Shaw S. High-temperature polymers for adhesive and composite applications. Mater Sci Technol. 1987;3(8):589–99.

    Article  CAS  Google Scholar 

  2. Wilson D. PMR-15 processing, properties and problems-a review. Br Polym J. 1988;20(5):405–16.

    Article  CAS  Google Scholar 

  3. Hergenrother PM. The use, design, synthesis, and properties of high performance/high temperature polymers: an overview. High Perfor Polym. 2003;15(1):3–45.

    Article  CAS  Google Scholar 

  4. Zhou T, Wu T, Xiang H, Li Z, Xu Z, Kong Q, Wang D. Simultaneously improving flame retardancy and dynamic mechanical properties of epoxy resin nanocomposites through synergistic effect of zirconium phenylphosphate and POSS. J Therm Anal Calorim. 2019;135(4):2117–24.

    Article  CAS  Google Scholar 

  5. Samaržija-Jovanović S, Jovanović V, Konstantinović S, Marković G, Marinović-Cincović M. Thermal behavior of modified urea–formaldehyde resins. J Therm Anal Calorim. 2011;104(3):1159–66.

    Article  Google Scholar 

  6. Thanki JD, Parsania PH. Dynamic DSC curing kinetics and thermogravimetric study of epoxy resin of 9, 9′-bis (4-hydroxyphenyl) anthrone-10. J Therm Anal Calorim. 2017;130(3):2145–56.

    Article  CAS  Google Scholar 

  7. Alam S, Kandpal LD, Mathur G. Structural and thermal characterisation of nadimide resins. J Therm Anal Calorim. 2001;64(2):487–94.

    Article  CAS  Google Scholar 

  8. Prabhu R, Jeevananda T, Reddy KR, Raghu AV. Polyaniline-fly ash nanocomposites synthesized via emulsion polymerization: Physicochemical, thermal and dielectric properties. Mater Sci Energ Technol. 2021;4:107–12.

    CAS  Google Scholar 

  9. Kim KT, Dao TD, Jeong HM, Anjanapura RV, Aminabhavi TM. Graphene coated with alumina and its utilization as a thermal conductivity enhancer for alumina sphere/thermoplastic polyurethane composite. Mater Chem Phys. 2015;153:291–300.

    Article  CAS  Google Scholar 

  10. Droske JP, Stille JK, Alston WB. Biphenylene end-capped polyquinoline and polyimide prepolymers as matrix resins for high-use-temperature composites. Macromolecules. 1984;17(1):14–8.

    Article  CAS  Google Scholar 

  11. Kim JH. MooreJ. A low-temperature route to polyimides Macromolecules. 1993;26(14):3510–3.

    CAS  Google Scholar 

  12. Kuroki T, Shibuya A, Toriida M, Tamai S. Melt-processable thermosetting polyimide: Synthesis, characterization, fusibility, and property. J Polym Sci A: Polym Chem. 2004;42(10):2395–404.

    Article  CAS  Google Scholar 

  13. Imai Y. Synthesis of novel organic-soluble high-temperature aromatic polymers. High Perfor Polym. 1995;7(3):337–45.

    Article  CAS  Google Scholar 

  14. Moore JA, Mehta PG. A novel route to polypyrazoles. Macromolecules. 1988;21(8):2644–7.

    Article  CAS  Google Scholar 

  15. Ameduri B, BoutevinB MF. Synthesis and characterization of maleimide polymers with pendant pyrazole groups IV Copolymerization of pyrazole-modified maleimides with vinyl ethers. J Polym Sci A Polym Chem. 1994;32(16):3161–9.

    Article  CAS  Google Scholar 

  16. Keller TM. Synthesis and polymerization of multiple aromatic ether phthalonitriles. Chem Mater. 1994;6(3):302–5.

    Article  CAS  Google Scholar 

  17. Sastri SB, Keller TM. Phthalonitrile polymers: cure behavior and properties. J Polym Sci A: PolymChem. 1999;37(13):2105–11.

    Article  CAS  Google Scholar 

  18. Laskoski M, Dominguez DD, KellerTM.Development of an oligomeric cyanate ester resin with enhanced processability. J Mater Chem. 2005;15(16):1611–1613.

  19. Keller TM. Imide-containing phthalonitrile resin. Polymer. 1993;34(5):952–5.

    Article  CAS  Google Scholar 

  20. Augustine D, Mathew D, Nair CR. Phenol-containing phthalonitrile polymers–synthesis, cure characteristics and laminate properties. Polym Int. 2013;62(7):1068–76.

    CAS  Google Scholar 

  21. Dominguez DD, KellerTM. Low-melting phthalonitrile oligomers: preparation, polymerization and polymer properties. High Perform Polym. 2006; 18(3):283–304.

  22. Dominguez DD, KellerTM, Laskoski M.Oligomeric bisphenol A‐based PEEK‐like phthalonitrile‐cure and polymer properties. J Polym Sci A: Polym Chem, 2016;54(23):3769–3777.

  23. Peng X, Sheng H, Guo H, Naito K, Yu X, Ding H, Qu X, Zhang Q. Synthesis and properties of a novel high-temperature diphenyl sulfone-based phthalonitrile polymer. High Perform Polym. 2014;26(7):837–45.

    Article  Google Scholar 

  24. Laskoski M, Clarke JS, Neal A, Harvey BG, Ricks-Laskoski HL, Hervey WJ, Daftary MN, Shepherd AR, Keller TM. Sustainable high-temperature phthalonitrile resins derived from resveratrol and dihydroresveratrol. ChemSelec. 2016;11(13):3423–7.

    Google Scholar 

  25. Laskoski M, Dominguez DD, Keller TM. Synthesis and properties of aromatic ether phosphine oxide containing oligomeric phthalonitrile resins with improved oxidative stability. Polymer. 2007;48(21):6234–40.

    Article  CAS  Google Scholar 

  26. Dominguez DD, Keller TM. Properties of phthalonitrile monomer blends and thermosetting phthalonitrile copolymers. Polymer. 2007;48(1):91–7.

    Article  CAS  Google Scholar 

  27. Zhao E, Hu J, Wang J, Shi M, Wang Z, Zeng K, Yang G. Preparation and properties of phthalonitrile resins promoted by melamine. High Perform Polym. 2018;30(5):561–70.

    Article  CAS  Google Scholar 

  28. Keller TM, Dominguez DD. High temperature resorcinol-based phthalonitrile polymer. Polymer. 2005;46(13):4614–8.

    Article  CAS  Google Scholar 

  29. Bulgakov BA, Babkin AV, Dzhevakov PB, Bogolyubov AA, Sulimov AV, Kepman AV, Kolyagin YG, Guseva DV, Rudyak VY, Chertovich AV. Low-melting phthalonitrile thermosetting monomers with siloxane-and phosphate bridges. EurPolymJ. 2016;84:205–17.

    CAS  Google Scholar 

  30. Guenthner AJ, Vij V, Haddad TS, Reams JT, Lamison KR, Sahagun CM, Ramirez SM, Yandek GR, Mabry JM. Silicon-Containing Tri-and Tetra-Functional Cyanate Esters: Synthesis, Cure Kinetics, and Network Properties. AIR FORCE RESEARCH LAB EDWARDS AFB CA AEROSPACE SYSTEMS DIRECTORATE; 2014 Jan 1.

  31. Guenthner AJ, Yandek GR, Wright ME, Petteys BJ, Quintana R, Connor D, Gilardi RD, Marchant D. A new silicon-containing bis (cyanate) ester resin with improved thermal oxidation and moisture resistance. Macromolecules. 2006;39(18):6046–53.

    Article  CAS  Google Scholar 

  32. ZZhuo D, Gu A, Liang G, Hu JT, Yuan L, Chen X. Flame retardancy materials based on a novel fully end-capped hyperbranched polysiloxane and bismaleimide/diallylbisphenol A resin with simultaneously improved integrated performance. JMater Chem. 2011;21(18):6584–6594.

  33. Chen X, Ye J, Yuan L, Liang G, Gu A. Multi-functional ladderlike polysiloxane: synthesis, characterization and its high performance flame retarding bismaleimide resins with simultaneously improved thermal resistance, dimensional stability and dielectric properties. J Mater Chem A. 2014;2(20):7491–501.

    Article  CAS  Google Scholar 

  34. Xi K, Meng Z, Heng L, Ge R, He H, Yu X, Jia X. Polyimide–polydimethylsiloxane copolymers for low-dielectric-constant and moisture-resistance applications. J Appl Polym Sci. 2009;113(3):1633–41.

    Article  CAS  Google Scholar 

  35. Damaceanu MD, Musteata VE, Cristea M, Bruma M. Viscoelastic and dielectric behaviour of thin films made from siloxane-containing poly (oxadiazole-imide) s. Eur Polym J. 2010;46(5):1049–62.

    Article  CAS  Google Scholar 

  36. Babanzadeh S, Mahjoub AR, Mehdipour-Ataei S. Novel soluble thermally stable silane-containing aromatic polyimides with reduced dielectric constant. Polym Degrad Stab. 2010;95(12):2492–8.

    Article  CAS  Google Scholar 

  37. Singh AS, Shukla SK, Pandey AK, Tripathi DN, Prasad NA. Synthesis and evaluation of catalytic curing behavior of novel nitrile-functionalized benzoxazine for phthalonitrile resins. Polym Bull. 2018;75(8):3781–800.

    Article  CAS  Google Scholar 

  38. Singh AS, Shukla SK, Mishra P, Pandey AK. Synthesis and thermal evaluation of novel mono- and bis-adamantylated resorcinol-based phthalonitrile resins with enhanced solubility. J Therm Anal Calorim. 2021. https://doi.org/10.1007/s10973-021-10991-0.

    Article  Google Scholar 

  39. Van Krevelan DW. Properties of Polymers. New York: Elsevier; 1990. p. 64.

    Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge Director, DMSRDE Kanpur for providing financial and technical support to accomplish the work. Authors acknowledge the support offered by Mr. Pankaj Sharma for contact angle measurement of samples.

Author information

Authors and Affiliations

Authors

Contributions

All authors have contributed to the study conception and design. Material preparation was done Mr. Jeetendra Kumar Banshiwal and Dr. Ajit Shankar Singh. Data collection and analysis were performed by Mr. Jeetendra Kumar Banshiwal, T.U. Patro, Dr. Ajit Shankar Singh and D. S. Bag The first draft of the manuscript was written by Dr. Ajit Shankar Singh and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Ajit Shankar Singh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 650 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bansiwal, J.K., Singh, A.S., Patro, T.U. et al. Synthesis and thermal analysis of silicon-containing bis-phthalonitrile resin with enhanced solubility. J Therm Anal Calorim 148, 383–392 (2023). https://doi.org/10.1007/s10973-022-11853-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-022-11853-z

Keywords

Navigation