Skip to main content
Log in

Using a nanofluid-based photovoltaic thermal (PVT) collector and eco-friendly refrigerant for solar compression cooling system

Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript


Electricity generated by photovoltaic (PV) modules can be converted into cooling using well-known refrigeration technologies based on vapor compression refrigeration cycles. One of the most critical issues arising when using PV modules is elevated temperatures in sunny and hot conditions, resulting in a corresponding decrease in electrical efficiency. Therefore, this work aims to enhance the performance of a solar compression refrigeration system using a single PV-thermal (PVT) collector fully integrated with a refrigeration system employing a low GWP refrigerant (R290) instead of the R134a. Furthermore, zinc oxide (ZnO) nanofluid is used to absorb thermal energy from the PVT collector and to improve its electrical efficiency. The outlet fluid from the PVT collector is used to subcool the refrigerant at the outlet from the condenser of the cycle. The impacts of varying the nanofluid flow rate, nanoparticle concentration, evaporator, and condenser temperatures on the performance of the system are thermodynamically evaluated. The theoretical analysis based on the first and second laws of thermodynamics indicates that using ZnO nanoparticles enables an enhanced Solar Cooling Efficiency (SCE) and Coefficient of Performance of the system by more than 30%, from 21 to 28% and from 9 to 12%, respectively, for various nanoparticle concentrations ranging from 0 to 6%. The use of the nanofluid results in a 1–6% decrease in the total heat exchanger area compared to pure water in the solar-collector circuit. Finally, it is reported that using R290 enhances the SCE by 3%, compared to a system employing R134a as the refrigerant.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15


A :

Area (m2)


Coefficient of performance

c p :

Specific heat capacity (J kg1 K1)

D :

Diameter (m)

D h :

Hydraulic diameter

F :

Friction factor

F R :

Heat removal factor

g :

Gravitational acceleration (m s2)

G :

Solar radiation (W m2)

h :

Convection heat transfer coefficient (W m2 K1)

i :

Enthalpy (J kg1)

k :

Thermal conductivity (W m1 K1)

L :

Length (m)

\(\dot{m}\) :

Mass flow rate (kg s1)

P :

Power (W)


Packing factor


Prandtl number




Photovoltaic thermal

Q :

Heat transfer rate (W)


Reynolds number


Root mean square


Solar cooling efficiency

T :

Temperature (°C)

U :

Overall heat transfer coefficient (W m2 K1)

V :

Wind speed (m s1)


Vapor compression refrigeration


Vapor compression refrigeration cycle

W :

Power consumption (W)

α :


β :

Efficiency temperature coefficient (K1, °C1)



δ :

Duct depth (m)

ε :


η :

Electrical efficiency

µ :

Viscosity (Pa s)

ρ :

Density (kg m3)

φ :



Stefan–Boltzmann constant (W m2 K4)

τ :







Base fluid






























































  1. Sheikhani H, et al. A review of solar absorption cooling systems combined with various auxiliary energy devices. J Therm Anal Calorim. 2018;134(3):2197–212.

    Article  CAS  Google Scholar 

  2. Zarei A, Akhavan S, Ghodrat M, Behnia M. Thermodynamic analysis and multi-objective optimization of a modified solar trigeneration system for cooling, heating and power using photovoltaic-thermal and flat plate collectors. Int Commun Heat Mass Transf. 2022;137:106261.

    Article  CAS  Google Scholar 

  3. Zarei A, Elahi S, Pahangeh H. Design and analysis of a novel solar compression-ejector cooling system with eco-friendly refrigerants using hybrid photovoltaic thermal (PVT) collector. Therm Sci Eng Prog. 2022;32:101311.

    Article  CAS  Google Scholar 

  4. Wang Y, Li M, Du W, Ji X, Xu L. Experimental investigation of a solar-powered adsorption refrigeration system with the enhancing desorption. Energy Convers Manage. 2018;155:253–61.

    Article  Google Scholar 

  5. Tashtoush B, Qaseem H. An integrated absorption cooling technology with thermoelectric generator powered by solar energy. J Therm Anal Calorim. 2022;147(2):1547–59.

    Article  CAS  Google Scholar 

  6. Bilardo M, Ferrara M, Fabrizio E. Performance assessment and optimization of a solar cooling system to satisfy Renewable Energy Ratio (RER) requirements in multi-family buildings. Renew Energy. 2020;155:990.

    Article  Google Scholar 

  7. Lucas M, Aguilar F, Ruiz J, Cutillas C, Kaiser A, Vicente P. Photovoltaic evaporative chimney as a new alternative to enhance solar cooling. Renew Energy. 2017;111:26–37.

    Article  Google Scholar 

  8. Alrwashdeh SS, Ammari H. Life cycle cost analysis of two different refrigeration systems powered by solar energy. Case Stud Therm Eng. 2019;16:100559.

    Article  Google Scholar 

  9. Papoutsis E, Koronaki I, Papaefthimiou V. Numerical simulation and parametric study of different types of solar cooling systems under Mediterranean climatic conditions. Energy Build. 2017;138:601–11.

    Article  Google Scholar 

  10. Lazzarin R, Noro M. Past, present, future of solar cooling: technical and economical considerations. Sol Energy. 2018;172:2–13.

    Article  Google Scholar 

  11. Opoku R, Anane S, Edwin I, Adaramola M, Seidu R. Comparative techno-economic assessment of a converted DC refrigerator and a conventional AC refrigerator both powered by solar PV. Int J Refrig. 2016;72:1–11.

    Article  Google Scholar 

  12. Izadpanah E, Zarei A, Akhavan S, Rabiee MB. An experimental investigation of natural convection heat transfer from a helically coiled heat exchanger. Int J Refrig. 2018;93:38–46.

    Article  CAS  Google Scholar 

  13. Su P, Ji J, Cai J, Gao Y, Han K. Dynamic simulation and experimental study of a variable speed photovoltaic DC refrigerator. Renew Energy. 2020;152:155–64.

    Article  Google Scholar 

  14. Han Y, et al. Impedance matching control strategy for a solar cooling system directly driven by distributed photovoltaics. Energy. 2019;168:953–65.

    Article  Google Scholar 

  15. Yang M-H, Yeh R-H. Performance and exergy destruction analyses of optimal subcooling for vapor-compression refrigeration systems. Int J Heat Mass Transf. 2015;87:1–10.

    Article  CAS  Google Scholar 

  16. Cortella G, D’Agaro P, Coppola M. Transcritical CO2 commercial refrigeration plant with adiabatic gas cooler and subcooling via HVAC: field tests and modelling. Int J Refrig. 2020;111:71–80.

    Article  CAS  Google Scholar 

  17. Hu M, et al. Performance assessment of a trifunctional system integrating solar PV, solar thermal, and radiative sky cooling. Appl Energy. 2020;260:114167.

    Article  Google Scholar 

  18. Jakhar S, Paliwal MK, Purohit N. Assessment of alumina/water nanofluid in a glazed tube and sheet photovoltaic/thermal system with geothermal cooling. J Therm Anal Calorim. 2021;147:3901.

    Article  Google Scholar 

  19. Dehghan M, Rahgozar S, Pourrajabian A, Aminy M, Halek F-S. Techno-economic perspectives of the temperature management of photovoltaic (PV) power plants: a case-study in Iran. Sustain Energy Technol Assess. 2021;45:101133.

    Google Scholar 

  20. Rejeb O, et al. Novel solar PV/Thermal collector design for the enhancement of thermal and electrical performances. Renew Energy. 2020;146:610–27.

    Article  Google Scholar 

  21. Arabkoohsar A, Xie G, Wei J, Asok A, Behzadi A, Mahian O. Perspectives and review of photovoltaic-thermal panels in net-zero energy buildings. J Therm Anal Calorim. 2022;147(16):8621–30.

    Article  CAS  Google Scholar 

  22. Herrando M, Markides CN. Hybrid PV and solar-thermal systems for domestic heat and power provision in the UK: techno-economic considerations. Appl Energy. 2016;161:512–32.

    Article  Google Scholar 

  23. Mellor A, et al. Roadmap for the next-generation of hybrid photovoltaic-thermal solar energy collectors. Sol Energy. 2018;174:386–98.

    Article  Google Scholar 

  24. Pordanjani AH, Aghakhani S, Afrand M, Mahmoudi B, Mahian O, Wongwises S. An updated review on application of nanofluids in heat exchangers for saving energy. Energy Convers Manage. 2019;198:111886.

    Article  Google Scholar 

  25. Herrando M, Pantaleo AM, Wang K, Markides CN. Solar combined cooling, heating and power systems based on hybrid PVT, PV or solar-thermal collectors for building applications. Renew Energy. 2019;143:637–47.

    Article  Google Scholar 

  26. Vajedi H, Dehghan M, Aminy M, Pourrajabian A, Ilis GG. Experimental study on an air-based photovoltaic-thermal (PV-T) system with a converging thermal collector geometry: a comparative performance analysis. Sustain Energy Technol Assess. 2022;52:102153.

    Google Scholar 

  27. Kazemian A, Salari A, Hakkaki-Fard A, Ma T. Numerical investigation and parametric analysis of a photovoltaic thermal system integrated with phase change material. Appl Energy. 2019;238:734–46.

    Article  Google Scholar 

  28. Preet S, Bhushan B, Mahajan T. Experimental investigation of water based photovoltaic/thermal (PV/T) system with and without phase change material (PCM). Sol Energy. 2017;155:1104–20.

    Article  CAS  Google Scholar 

  29. Al-Waeli AH, Sopian K, Chaichan MT, Kazem HA, Hasan HA, Al-Shamani AN. An experimental investigation of SiC nanofluid as a base-fluid for a photovoltaic thermal PV/T system. Energy Convers Manage. 2017;142:547–58.

    Article  CAS  Google Scholar 

  30. Alshaheen AAS, Kianifar A, Bradaran Rahimi A. Experimental study of using nano-(GNP, MWCNT, and SWCNT)/water to investigate the performance of a PVT module. J Therm Anal Calorim. 2019;139:3549.

    Article  Google Scholar 

  31. Khoshvaght-Aliabadi M, Alizadeh A. An experimental study of Cu–water nanofluid flow inside serpentine tubes with variable straight-section lengths. Exp Thermal Fluid Sci. 2015;61:1–11.

    Article  CAS  Google Scholar 

  32. Khoshvaght-Aliabadi M, Davoudi S, Dibaei M. Performance of agitated-vessel U tube heat exchanger using spiky twisted tapes and water based metallic nanofluids. Chem Eng Res Des. 2018;133:26–39.

    Article  CAS  Google Scholar 

  33. Sardarabadi M, Passandideh-Fard M. Experimental and numerical study of metal-oxides/water nanofluids as coolant in photovoltaic thermal systems (PVT). Sol Energy Mater Sol Cells. 2016;157:533–42.

    Article  CAS  Google Scholar 

  34. Parthiban A, Reddy K, Pesala B, Mallick T. Effects of operational and environmental parameters on the performance of a solar photovoltaic-thermal collector. Energy Convers Manage. 2020;205:112428.

    Article  Google Scholar 

  35. Herrando M, Markides CN, Hellgardt K. A UK-based assessment of hybrid PV and solar-thermal systems for domestic heating and power: system performance. Appl Energy. 2014;122:288–309.

    Article  Google Scholar 

  36. Hissouf M, Najim M, Charef A. Numerical study of a covered Photovoltaic-Thermal Collector (PVT) enhancement using nanofluids. Sol Energy. 2020;199:115–27.

    Article  CAS  Google Scholar 

  37. Nebot-Andrés L, Catalán-Gil J, Sánchez D, Calleja-Anta D, Cabello R, Llopis R. Experimental determination of the optimum working conditions of a transcritical CO2 refrigeration plant with integrated mechanical subcooling. Int J Refrig. 2020;113:266–75.

    Article  Google Scholar 

  38. Maadi SR, Kolahan A, Passandideh-Fard M, Sardarabadi M, Moloudi R. Characterization of PVT systems equipped with nanofluids-based collector from entropy generation. Energy Convers Manage. 2017;150:515–31.

    Article  CAS  Google Scholar 

  39. de Paula CH, Duarte WM, Rocha TTM, de Oliveira RN, Maia AAT. Optimal design and environmental, energy and exergy analysis of a vapor compression refrigeration system using R290, R1234yf, and R744 as alternatives to replace R134a. Int J Refrig. 2020;113:10–20.

    Article  Google Scholar 

  40. Tiwari A, Sodha M. Performance evaluation of solar PV/T system: an experimental validation. Sol Energy. 2006;80(7):751–9.

    Article  CAS  Google Scholar 

  41. Yazdanifard F, Ebrahimnia-Bajestan E, Ameri M. Investigating the performance of a water-based photovoltaic/thermal (PV/T) collector in laminar and turbulent flow regime. Renew Energy. 2016;99:295–306.

    Article  CAS  Google Scholar 

  42. Ramos A, Chatzopoulou MA, Guarracino I, Freeman J, Markides CN. Hybrid photovoltaic-thermal solar systems for combined heating, cooling and power provision in the urban environment. Energy Convers Manage. 2017;150:838–50.

    Article  Google Scholar 

  43. Guarracino I, Mellor A, Ekins-Daukes NJ, Markides CN. Dynamic coupled thermal-and-electrical modelling of sheet-and-tube hybrid photovoltaic/thermal (PVT) collectors. Appl Therm Eng. 2016;101:778–95.

    Article  Google Scholar 

  44. Guarracino I, Freeman J, Ramos A, Kalogirou SA, Ekins-Daukes NJ, Markides CN. Systematic testing of hybrid PV-thermal (PVT) solar collectors in steady-state and dynamic outdoor conditions. Appl Energy. 2019;240:1014–30.

    Article  Google Scholar 

  45. Ibrahim A, Othman MY, Ruslan MH, Mat S, Sopian K. Recent advances in flat plate photovoltaic/thermal (PV/T) solar collectors. Renew Sustain Energy Rev. 2011;15(1):352–65.

    Article  CAS  Google Scholar 

  46. Zarei A, Liravi M, Rabiee MB, Ghodrat M. A Novel, eco-friendly combined solar cooling and heating system, powered by hybrid Photovoltaic thermal (PVT) collector for domestic application. Energy Convers Manage. 2020;222:113198.

    Article  CAS  Google Scholar 

  47. TamizhMani G, Ji L, Tang Y, Petacci L, Osterwald C. Photovoltaic module thermal/wind performance: long-term monitoring and model development for energy rating. In: NCPV and Solar Program Review Meeting Proceedings, 24–26 March 2003, Denver, Colorado (CD-ROM), 2003, no. NREL/CP-520–35645: National Renewable Energy Lab., Golden, CO.(US).

  48. Chenni R, Makhlouf M, Kerbache T, Bouzid A. A detailed modeling method for photovoltaic cells. Energy. 2007;32(9):1724–30.

    Article  CAS  Google Scholar 

  49. Duffie JA, Beckman WA, Blair N. Solar engineering of thermal processes, photovoltaics and wind. New York: John Wiley & Sons; 2020.

    Book  Google Scholar 

  50. Zarei A, Akhavan S, Rabiee MB, Elahi S. Energy, exergy and economic analysis of a novel solar driven CCHP system powered by organic Rankine cycle and photovoltaic thermal collector. Appl Therm Eng. 2021;194:117091.

    Article  CAS  Google Scholar 

  51. Sakellariou E, Axaopoulos P. An experimentally validated, transient model for sheet and tube PVT collector. Sol Energy. 2018;174:709–18.

    Article  Google Scholar 

  52. Bergman TL, Lavine A, Incropera FP, Dewitt DP. Fundamentals of heat and mass transfer. New York: John Wiley & Sons; 2017.

    Google Scholar 

  53. Swinbank WC. Long-wave radiation from clear skies. Q J R Meteorol Soc. 1963;89(381):339–48.

    Article  Google Scholar 

  54. Eicker U. Solar technologies for buildings. New York: John Wiley & Sons; 2003.

    Book  Google Scholar 

  55. Bahaidarah H, Subhan A, Gandhidasan P, Rehman S. Performance evaluation of a PV (photovoltaic) module by back surface water cooling for hot climatic conditions. Energy. 2013;59:445–53.

    Article  Google Scholar 

  56. Sarhaddi F, Farahat S, Ajam H, Behzadmehr A, Adeli MM. An improved thermal and electrical model for a solar photovoltaic thermal (PV/T) air collector. Appl Energy. 2010;87(7):2328–39.

    Article  Google Scholar 

  57. Yu W, Choi S. The role of interfacial layers in the enhanced thermal conductivity of nanofluids: a renovated Maxwell model. J Nanopart Res. 2003;5(1):167–71.

    Article  CAS  Google Scholar 

  58. Batchelor G. The effect of Brownian motion on the bulk stress in a suspension of spherical particles. J Fluid Mech. 1977;83(1):97–117.

    Article  Google Scholar 

  59. Pak BC, Cho YI. Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles. Exp Heat Transf Int J. 1998;11(2):151–70.

    Article  CAS  Google Scholar 

  60. Mohamed MM, Mahmoud NH, Farahat MA. Energy storage system with flat plate solar collector and water-ZnO nanofluid. Sol Energy. 2020;202:25–31.

    Article  CAS  Google Scholar 

  61. Brown JS, Yana-Motta SF, Domanski PA. Comparitive analysis of an automotive air conditioning systems operating with CO2 and R134a. Int J Refrig. 2002;25(1):19–32.

    Article  Google Scholar 

  62. Patel B, Desai NB, Kachhwaha SS, Jain V, Hadia N. Thermo-economic analysis of a novel organic Rankine cycle integrated cascaded vapor compression–absorption system. J Clean Prod. 2017;154:26–40.

    Article  CAS  Google Scholar 

  63. Yari M, Mahmoudi S. Thermodynamic analysis and optimization of novel ejector-expansion TRCC (transcritical CO2) cascade refrigeration cycles (Novel transcritical CO2 cycle). Energy. 2011;36(12):6839–50.

    CAS  Google Scholar 

  64. Cengel YA, Klein S, Beckman W. Heat transfer: a practical approach. New York: McGraw-Hill; 1998.

    Google Scholar 

  65. Kreith F, Bohn M. Principles of heat transfer, St. Paul: West Publishing Company; 1993.

    Google Scholar 

  66. Kim D, Ferreira CI. Solar refrigeration options–a state-of-the-art review. Int J Refrig. 2008;31(1):3–15.

    Article  CAS  Google Scholar 

  67. Zarei A, Seddighi S, Elahi S, Örlü R. Experimental investigation of the heat transfer from the helical coil heat exchanger using bubble injection for cold thermal energy storage system. Appl Therm Eng. 2022;200:117559.

    Article  Google Scholar 

  68. Han X-H, Qiu Y, Li P, Xu Y-J, Wang Q, Chen G-M. Cycle performance studies on HFC-161 in a small-scale refrigeration system as an alternative refrigerant to HFC-410A. Energy Build. 2012;44:33–8.

    Article  CAS  Google Scholar 

  69. Esfe MH, Kamyab MH, Valadkhani M. Application of nanofluids and fluids in photovoltaic thermal system: an updated review. Sol Energy. 2020;199:796–818.

    Article  Google Scholar 

  70. Al-Waeli AH, Chaichan MT, Sopian K, Kazem HA, Mahood HB, Khadom AA. Modeling and experimental validation of a PVT system using nanofluid coolant and nano-PCM. Sol Energy. 2019;177:178–91.

    Article  CAS  Google Scholar 

  71. Ma T, Li M, Kazemian A. Photovoltaic thermal module and solar thermal collector connected in series to produce electricity and high-grade heat simultaneously. Appl Energy. 2020;261:114380.

    Article  Google Scholar 

  72. Sánchez D, Cabello R, Llopis R, Arauzo I, Catalán-Gil J, Torrella E. Energy performance evaluation of R1234yf, R1234ze (E), R600a, R290 and R152a as low-GWP R134a alternatives. Int J Refrig. 2017;74:269–82.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Ehsan Izadpanah.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zarei, A., Izadpanah, E. & Babaie Rabiee, M. Using a nanofluid-based photovoltaic thermal (PVT) collector and eco-friendly refrigerant for solar compression cooling system. J Therm Anal Calorim 148, 2041–2055 (2023).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: