Skip to main content
Log in

The effect of POSS-NH2 and POSS-PEG on the crystallization kinetics of poly (l-lactic acid) by traditional DSC and fast scanning chip calorimetry

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Thermal analysis is an effective mean to study the crystallization of polymers. Fast scanning chip calorimetry (FSC) has ultra-high cooling and heating rate and plays an important role in the study of crystallization behavior. The crystallization kinetics of poly (l-lactic acid) (PLLA) with amino polyhedral oligomeric silsesquioxane (POSS-NH2) and polyethylene glycol-grafted POSS (POSS-PEG) was investigated by traditional differential scanning calorimetry (DSC) and FSC. The results show that the addition of POSS-PEG has a better promoting effect on the crystallization rate of PLLA than POSS-NH2. And there are two differences between the results of FSC and DSC: firstly, FSC can effectively avoid the nucleation and crystallization behavior in the cooling process and ensure that the crystallization process occurs completely in the isothermal stage, while DSC cannot; second, the measured crystallization rate by FSC is lower than the traditional DSC data. In a word, POSS plays a role of nucleation agent in PLLA crystallization, and PEG as nucleation accelerator further improves the crystallization rate; FSC can effectively avoid the nucleation and crystallization in the cooling and heating process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Adamovsky SA, Minakov AA, Schick C. Scanning microcalorimetry at high cooling rate. Thermochim Acta. 2003;403:55–63.

    Article  CAS  Google Scholar 

  2. Li ZL, Zhou DS, Hu WB. Recent progress on flash DSC study of polymer crystallization and melting. Acta Polymerica Sinica. 2016;9:1179–97.

    Google Scholar 

  3. He Y, Luo R, Li Z, Lv R, Zhou D, Lim S, Ren X, Gao H, Hu W. Comparing crystallization kinetics between polyamide 6 and polyketone via chip-calorimeter measurement. Macromol Chem Phys. 2017;219:1700385.

    Article  Google Scholar 

  4. He Y, Xie K, Wang Y, Zhou D, Hu W. Characterization of polymer crystallization kinetics via fast-scanning chip-calorimetry. Acta Phys Chim Sin. 2020;36:1905081.

    Google Scholar 

  5. Wang J, Li Z, Perez RA, Mueller AJ, Zhang B, Grayson SM, Hu W. Comparing crystallization rates between linear and cyclic poly (epsilon-caprolactones) via fast-scan chip-calorimeter measurements. Polymer. 2015;63:34–40.

    Article  CAS  Google Scholar 

  6. Toda A, Androsch R, Schick C. Insights into polymer crystallization and melting from fast scanning chip calorimetry. Polymer. 2016;91:239–63.

    Article  CAS  Google Scholar 

  7. Androsch R, Di Lorenzo ML. Kinetics of crystal nucleation of poly (l-lactic acid). Polymer. 2013;54:6882–5.

    Article  CAS  Google Scholar 

  8. Androsch R, Iqbal HMN, Schick C. Non-isothermal crystal nucleation of poly (l-lactic acid). Polymer. 2015;81:151–8.

    Article  CAS  Google Scholar 

  9. Androsch R, Zhuravlev E, Schick C. Solid-state reorganization, melting and melt-recrystallization of conformationally disordered crystals (α′-phase) of poly (l-lactic acid). Polymer. 2014;55:4932–41.

    Article  CAS  Google Scholar 

  10. Androsch R, Di Lorenzo ML, Schick C. Effect of molar mass on enthalpy relaxation and crystal nucleation of poly (l-lactic acid). Eur Polymer J. 2017;96:361–9.

    Article  CAS  Google Scholar 

  11. Androsch R, Di Lorenzo ML. Effect of molar mass on the α′/α-transition in poly (l-lactic acid). Polymer. 2017;114:144–8.

    Article  CAS  Google Scholar 

  12. Androsch R, Di Lorenzo ML, Schick C. Optical microscopy to study crystal nucleation in polymers using a fast scanning chip calorimeter for precise control of the nucleation pathway. Macromol Chem Phys. 2018;219:1700479.

    Article  Google Scholar 

  13. Androsch R, Zhang R, Schick C. Melt-recrystallization of poly (l-lactic acid) initially containing alpha ’-crystals. Polymer. 2019;176:227–35.

    Article  CAS  Google Scholar 

  14. Androsch R, Toda A, Furushima Y, Schick C. Insertion-crystallization-induced low-temperature annealing peaks in melt-crystallized poly (l-lactic acid). Macromol Chem Phys. 2021;222:2100177.

    Article  CAS  Google Scholar 

  15. Lv R, He Y, Wang J, Wang J, Hu J, Zhang J, Hu W. Flash DSC study on the annealing behaviors of poly (l-lactide acid) crystallized in the low temperature region. Polymer. 2019;174:123–9.

    Article  CAS  Google Scholar 

  16. Li Z, Ye X, Wang D, Zeng Y, Zhou H, Guo W. Novel experimental protocol used to determine the nucleation kinetics of polymer realized by Flash DSC: The case of poly(l-lactic acid)/poly(d-lactic acid) blends. Polym Testing. 2018;66:251–5.

    Article  CAS  Google Scholar 

  17. Chen Y, Xie K, He Y, Hu W. Fast-scanning chip-calorimetry measurement of crystallization kinetics of poly (glycolic acid). Polymers. 2021;13:891.

    Article  CAS  Google Scholar 

  18. Chen DJ, Lei LS, Zou MS, Li XD. Non-isothermal crystallization kinetics of poly (ethylene glycol)-Poly (l-lactide) diblock copolymer and poly (ethylene glycol) homopolymer via fast-scan chip-calorimeter. Polymers. 2021;13:11.

    Google Scholar 

  19. Li X, Zou M, Lei L, Xi L. non-isothermal crystallization kinetics of poly (ethylene glycol) and poly (ethylene glycol)-b-poly (epsilon-caprolactone) by flash DSC analysis. Polymers. 2021;13:3713.

    Article  CAS  Google Scholar 

  20. Mileva D, Wang J, Gahleitner M, Jariyavidyanont K, Androsch R. new insights into crystallization of heterophasic isotactic polypropylene by fast scanning chip calorimetry. Polymers. 2020;12:1683.

    Article  CAS  Google Scholar 

  21. Papageorgiou DG, Zhuravlev E, Papageorgiou GZ, Bikiaris D, Chrissafis K, Schick C. Kinetics of nucleation and crystallization in poly(butylene succinate) nanocomposites. Polymer. 2014;55:6725–34.

    Article  CAS  Google Scholar 

  22. Quattrosoldi S, Androsch R, Janke A, Soccio M, Lotti N. enthalpy relaxation, crystal nucleation and crystal growth of biobased poly(butylene isophthalate). Polymers. 2020;12:235.

    Article  CAS  Google Scholar 

  23. Furushima Y, Kumazawa S, Umetsu H, Toda A, Zhuravlev E, Schick C. Melting and recrystallization kinetics of poly(butylene terephthalate). Polymer. 2017;109:307–14.

    Article  CAS  Google Scholar 

  24. Toda A. Temperature-modulated fast scanning calorimetry of isothermal crystallization of Poly (butylene terephthalate). Polymer. 2021;228:123936.

    Article  CAS  Google Scholar 

  25. Toda A, Furushima Y, Androsch R, Schick C. On the crystal stabilization during two-step isothermal crystallization of poly (butylene terephthalate) examined by fast scanning calorimetry. Polymer. 2021;230:124057.

    Article  CAS  Google Scholar 

  26. Toda A, Taguchi K, Nozaki K, Guan X, Hu W, Furushima Y, Schick C. Crystallization and melting of poly(butylene terephthalate) and poly (ethylene terephthalate) investigated by fast-scan chip calorimetry and small angle X-ray scattering. Polymer. 2020;192:122303.

    Article  CAS  Google Scholar 

  27. Androsch R, Schick C, Rhoades AM. Application of Tammann’s two-stage crystal nuclei development method for analysis of the thermal stability of homogeneous crystal nuclei of poly (ethylene terephthalate). Macromolecules. 2015;48:8082–9.

    Article  CAS  Google Scholar 

  28. Lv R, He Y, Xie K, Hu W. Crystallization rates of moderate and ultrahigh molecular weight polyethylene characterized by Flash DSC measurement. Polym Int. 2020;69:18–23.

    Article  CAS  Google Scholar 

  29. Mileva D, Wang JB, Gahleitner M, Doshev P, Androsch R. Crystallization behaviour of heterophasic propylene-ethylene copolymer at rapid cooling conditions. Polymer. 2016;102:214–20.

    Article  CAS  Google Scholar 

  30. Zhang M, Li Z, Fan X, Ren G, Guo W, Zhou H, Ma Y. Fast-scan chip-calorimetry measurement on crystallization and enthalpy relaxation kinetics of isotactic poly(cyclohexene carbonate). J Polym Res. 2021;28:17.

    Article  Google Scholar 

  31. Qiu Z, Pan H. Preparation, crystallization and hydrolytic degradation of biodegradable poly (l-lactide)/polyhedral oligomeric silsesquioxanes nanocomposite. Compos Sci Technol. 2010;70:1089–94.

    Article  CAS  Google Scholar 

  32. Pan H, Qiu Z. Biodegradable poly (l-lactide)/polyhedral oligomeric silsesquioxanes nanocomposites: enhanced crystallization, mechanical properties, and hydrolytic degradation. Macromolecules. 2010;43:1499–506.

    Article  CAS  Google Scholar 

  33. Yu J, Qiu Z. Preparation and properties of biodegradable poly (l-lactide)/octamethyl-polyhedral oligomeric silsesquioxanes nanocomposites with enhanced crystallization rate via simple melt compounding. ACS Appl Mater Interfaces. 2011;3:890–7.

    Article  CAS  Google Scholar 

  34. Zhang WA, Muller AHE. Architecture, self-assembly and properties of well-defined hybrid polymers based on polyhedral oligomeric silsequioxane (POSS). Prog Polym Sci. 2013;38:1121–62.

    Article  CAS  Google Scholar 

  35. Sirin H, Kodal M, Ozkoc G. The influence of POSS type on the properties of PLA. Polym Compos. 2016;37:1497–506.

    Article  CAS  Google Scholar 

  36. Fernández DM, Jesus Fernández M, Cobos M. Effect of polyhedral oligomeric silsesquioxane (POSS) derivative on the morphology, thermal, mechanical and surface properties of poly(lactic acid)-based nanocomposites. J Mater Sci. 2016;51:3628–42.

    Article  Google Scholar 

  37. Zeybek YM, Kaynak C. Behaviour of PLA/POSS nanocomposites: Effects of filler content, functional group and copolymer compatibilization. Polym Polym Compos. 2021;9:S485-500.

    Google Scholar 

  38. Tang L, Qiu Z. Crystallization behavior and mechanical properties of biodegradable poly (l-lactide)/trisilanolisobutyl-polyhedral oligomeric silsesquioxanes nanocomposite. J Nanosci Nanotechnol. 2016;16:10015–20.

    Article  CAS  Google Scholar 

  39. Yazdaninia A, Khonakdar HA, Jafari SH, Asadi V. Influence of trifluoropropyl-POSS nanoparticles on the microstructure, rheological, thermal and thermomechanical properties of PLA. RSC Adv. 2016;6:37149–59.

    Article  CAS  Google Scholar 

  40. Yu Q, Zhang G, Shi X, Jing Z, Kang Y, Li J. Synergistic effects of polyethylene glycol and polyhedral oligomeric silsesquioxanes on crystallization behavior of poly (l-lactide). J Macromol Sci Part B-Phys. 2017;56:12–25.

    Article  CAS  Google Scholar 

  41. Zubrowska A, Piorkowska E, Kowalewska A, Cichorek M. Novel blends of polylactide with ethylene glycol derivatives of POSS. Colloid Polym Sci. 2015;293:23–33.

    Article  CAS  Google Scholar 

  42. Zubrowska A, Piorkowska E, Bojda J. Novel tough crystalline blends of polylactide with ethylene glycol derivative of POSS. J Polym Environ. 2017;1:145–51.

    Google Scholar 

  43. Kodal M, Sirin H, Ozkoc G. Non-isothermal crystallization kinetics of PEG plasticized PLA/G-POSS nanocomposites. Polym Compos. 2017;38:1378–89.

    Article  CAS  Google Scholar 

  44. Kodal M, Sirin H, Ozkoc G. Investigation of relationship between crystallization kinetics and interfacial interactions in plasticized poly (lactic acid)/POSS nanocomposites: “effects of different POSS types.” Polym Compos. 2018;39:2674–84.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Basic Research Plan in Shaanxi Province of China (Program No. 2021JM‐431) and National Natural Science Foundation of China (Grant no. 21506167). And I would like to thank Professor Wenbing Hu and his team member Yucheng He of Nanjing University for kindly providing the FSC devices and guidance in FSC testing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunyan Luo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, C., Fang, M., Sun, J. et al. The effect of POSS-NH2 and POSS-PEG on the crystallization kinetics of poly (l-lactic acid) by traditional DSC and fast scanning chip calorimetry. J Therm Anal Calorim 148, 753–766 (2023). https://doi.org/10.1007/s10973-022-11833-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-022-11833-3

Keywords

Navigation