Skip to main content
Log in

Multi-objective optimization of three different fins of the heat exchangers used in the domestic gas-fired water heaters: a hydrothermal performance and entropy generation analysis

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Enhancing the performance of domestic gas-fired water heaters, due to their extensive usage, will significantly reduce their energy consumption and greenhouse gas emissions. Therefore, a numerical investigation, comparison, and optimization of three different fins of the heat exchangers used in the domestic gas-fired water heaters have been performed. The variations of thermal and flow parameters, including Nusselt number (Nu), Colburn factor (j), and Friction factor (f) for every proposed geometry, have been studied numerically. Besides, the effect of parameters including separator angle (α) in the first geometry (G1), nondimensional distance of circular vortex generator from the fin base (L*) in the second geometry (G2), and the nondimensional distance of winglets from the center of pipes' cross section (R*) in the third geometry (G3) on the fluid flow and heat transfer was investigated. Results revealed that the best hydrothermal performance is obtained in G1, G2, and G3 with the specifications of α = 40°, L* = 0.26, and R* = 1.74, respectively. Besides, compared with plain geometry, the maximum enhancement (11.2%) was achieved in G2 with L* = 0.26. The entropy generation (Sg) for each geometry was studied to analyze the performance of the designed fins. It was found that the G2 with L* = 0.13 shows the minimum Sg. The TOPSIS multi-objective optimization results showed that by increasing the Reynolds number (Re), the G2 with L* = 0.13 showed the best performance and was chosen as the best geometry.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Abbreviations

\(A\) :

Area (m2)

a:

Width of winglet (mm)

b:

Length of winglet (mm)

\(c_{\text{p}}\) :

Heat capacity (kJ kg−1 K−1)

\(D_{\text{H}}\) :

Hydraulic diameter (mm)

D :

Large diameter of Ellipsoid (mm)

d :

Diameter of vortex generator (mm)

\(e\) :

Internal energy (J)

\(\vec{f}\) :

Volumetric force (J)

f :

Friction factor

G1:

First geometry

G2:

Second geometry

G3:

Third geometry

h :

Heat transfer coefficient (W m−2 K−1)

H :

Enthalpy (Jkg−1)

j:

Colburn factor

\(\vec{J}\) :

Diffusion flux (kg m−2 s−1)

k :

Thermal conductivity (W m−1 K−1)

K :

Turbulent kinetic energy (J)

L :

Length of Airflow domain (mm)

L*:

Dimensionless length

l:

Length between the vortex generator and inlet in G2 (mm)

\(\dot{m}\) :

Mass flow rate (kg s−1)

M:

The gap between Inlet and Separator (mm)

Nu :

Nusselt number

p :

Pressure (Pa)

Pr:

Prandtl number

R*:

Dimensionless radius

\({\text{Re}}\) :

Reynolds number

S: :

Perimeter (mm)

S g :

Entropy generation

t :

Thickness of Airflow domain (mm)

T :

Temperature (K)

\(T_{\infty }\) :

Reference temperature (K)

\(T_{\text{s}}\) :

Calculated temperature (K)

\(T_{\text{b}}\) :

Bulk temperature (K)

\(\vec{v}\) :

Flow Velocity (ms−1)

X:

Width of Airflow domain (mm)

\(\alpha\) :

Angle of separator

\(\beta\) :

Angle of winglet

\(\varepsilon\) :

Turbulent kinetic energy dissipation rate (m2 s−3)

\(\mu\) :

Dynamic viscosity (kg m−1 s−1)

\(\mu_{t}\) :

Turbulent dynamic viscosity (kg m−1 s−1)

\(\upsilon\) :

Kinematic viscosity (m2 s−1)

\(\rho\) :

Mass density (kg m−3)

\(\tau\) :

Deviatoric stress tensor

in:

Inlet

o:

Outlet

w:

Wall

References

  1. Li G. Investigations of life cycle climate performance and material life cycle assessment of packaged air conditioners for residential application. Sustain Energy Technol Assess. 2015. https://doi.org/10.1016/j.seta.2015.07.002.

    Article  Google Scholar 

  2. Li G. Comprehensive investigations of life cycle climate performance of packaged air source heat pumps for residential application. Renew Sustain Energy Rev. 2015. https://doi.org/10.1016/j.rser.2014.11.078.

    Article  Google Scholar 

  3. González-Torres M, Pérez-Lombard L, Coronel JF, Maestre IR, Yan D. A review on buildings energy information: Trends, end-uses, fuels and drivers. Energy Rep. 2022;8:626–37. https://doi.org/10.1016/j.egyr.2021.11.280.

    Article  Google Scholar 

  4. Li G, Du Y. Performance integration and economic benefits of new control strategies for heat pump-gas fired water heater hybrid system. Appl Energy. 2018;232:101–18. https://doi.org/10.1016/j.apenergy.2018.09.065.

    Article  Google Scholar 

  5. Li G. Parallel loop configuration for hybrid heat pump – gas fired water heater system with smart control strategy. Appl Therm Eng. 2018;138:807–18. https://doi.org/10.1016/j.applthermaleng.2018.04.087.

    Article  Google Scholar 

  6. Li G. Environmental impact assessments of heat pump–gas fired water heater hybrid system for space heating application. Int J Environ Sci Technol. 2019. https://doi.org/10.1007/s13762-018-2090-3.

    Article  Google Scholar 

  7. Moghaddam MHS, Moghaddam MS, Khorramdel M. Numerical study of geometric parameters effecting temperature and thermal efficiency in a premix multi-hole flat flame burner. Energy. 2017;125:654–62. https://doi.org/10.1016/j.energy.2017.02.116.

    Article  CAS  Google Scholar 

  8. Chen Z, Qin C, Duan P. Lifted flame property and interchangeability of natural gas on partially premixed gas burners. Case Stud Thermal Eng. 2018;12:333–9. https://doi.org/10.1016/j.csite.2018.05.004.

    Article  Google Scholar 

  9. Bourke G, Bansal P, Raine R. Performance of gas tankless (instantaneous) water heaters under various international standards. Appl Energy. 2014;131:468–78. https://doi.org/10.1016/j.apenergy.2014.06.008.

    Article  Google Scholar 

  10. Keawkamrop T, Asirvatham LG, Dalkılıç AS, Ahn HS, Mahian O, Wongwises S. An experimental investigation of the air-side performance of crimped spiral fin-and-tube heat exchangers with a small tube diameter. Int J Heat Mass Transf. 2021. https://doi.org/10.1016/j.ijheatmasstransfer.2021.121571.

    Article  Google Scholar 

  11. Deymi-Dashtebayaz M, Rezapour M. The effect of using nanofluid flow into a porous channel in the CPVT under transient solar heat flux based on energy and exergy analysis. J Therm Anal Calorim. 2020;145(2):507–21. https://doi.org/10.1007/s10973-020-09796-4.

    Article  CAS  Google Scholar 

  12. Ebrahimi-Moghadam A, Kowsari S, Farhadi F, Deymi-Dashtebayaz M. Thermohydraulic sensitivity analysis and multi-objective optimization of Fe3O4/H2O nanofluid flow inside U-bend heat exchangers with longitudinal strip inserts. Appl Therm Eng. 2020. https://doi.org/10.1016/j.applthermaleng.2019.114518.

    Article  Google Scholar 

  13. Ebrahimi-Moghadam A, Davood H, Deymi-Dashtebayaz M. A comprehensive thermo-hydraulic analysis and optimization of turbulent TiO2/W-EG nano-fluid flow inside double-pipe heat exchangers with helical coil inserts. J Braz Soc Mech Sci Eng. 2020. https://doi.org/10.1007/s40430-020-02320-7.

    Article  Google Scholar 

  14. Ravanbakhsh M, Deymi-Dashtebayaz M, Rezapour M. Numerical investigation on the performance of the double tube heat exchangers with different tube geometries and Turbulators. J Therm Anal Calorim. 2022. https://doi.org/10.1007/s10973-022-11295-7.

    Article  Google Scholar 

  15. Shi WN, Liu TF, Song KW, Zhang Q, Hu WL, Wang LB. The optimal longitudinal location of curved winglets for better thermal performance of a finned-tube heat exchanger. Int J Therm Sci. 2021. https://doi.org/10.1016/j.ijthermalsci.2021.107035.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Deymi-Dashtebayaz M, Akhoundi M, Ebrahimi-Moghadam A, Arabkoohsar A, Moghadam AJ, Farzaneh-Gord M. Thermo-hydraulic analysis and optimization of CuO/water nanofluid inside helically dimpled heat exchangers. J Therm Anal Calorim. 2020. https://doi.org/10.1007/s10973-020-09398-0.

    Article  Google Scholar 

  17. Zhou H, Liu D, Sheng Q, Hu M, Cheng Y, Cen K. Research on gas side performance of staggere d fin-tub e bundles with different serrated fin geometries. Int J Heat Mass. 2020. https://doi.org/10.1016/j.ijheatmasstransfer.2020.119509.

    Article  Google Scholar 

  18. Sadeghianjahromi A, Wang C-C. Heat transfer enhancement in fin-and-tube heat exchangers: a review on different mechanisms. Renew Sustain Energy Rev. 2021. https://doi.org/10.1016/j.rser.2020.110470.

    Article  Google Scholar 

  19. Zhang K, Li M-J, Liu H, Xiong J-G, He Y-L. Experimental and numerical study and comparison of performance for herringbone wavy fin and enhanced fin with convex-strips in fin-and-tube heat exchanger. Int J Heat Mass Transf. 2021. https://doi.org/10.1016/j.ijheatmasstransfer.2021.121390.

    Article  Google Scholar 

  20. Hemant Naik ST. Thermal performance analysis of fin-tube heat exchanger with staggered tube arrangement in presence of rectangular winglet pairs. Int J Therm Sci. 2021. https://doi.org/10.1016/j.ijthermalsci.2020.106723.

    Article  Google Scholar 

  21. Wu J, Liu P, Yu M, Liu Z, Liu W. Thermo-hydraulic performance and exergy analysis of a fin-and-tube heat exchanger with sinusoidal wavy winglet type vortex generators. Int J Therm Sci. 2022. https://doi.org/10.1016/j.ijthermalsci.2021.107274.

    Article  Google Scholar 

  22. Miao L, Wang Y, Kavtaradze R, Liu S, Zhang S. Experimental and numerical analyses of thermal-hydraulic characteristics of aluminium flying-wing fins. Appl Therml Eng. 2022. https://doi.org/10.1016/j.applthermaleng.2021.117928.

    Article  Google Scholar 

  23. Kobayashi H, Yaji K, Yamasaki S, Fujita K. Freeform winglet design of fin-and-tube heat exchangers guided by topology optimization. Appl Therm Eng. 2019. https://doi.org/10.1016/j.applthermaleng.2019.11402.

    Article  Google Scholar 

  24. Tran N, Wang C-C. Optimization of the airside thermal performance of mini-channel-flat-tube radiators by using composite straight-and-louvered fins. Int J Heat Mass Transfer. 2020. https://doi.org/10.1016/j.ijheatmasstransfer.2020.120163.

    Article  Google Scholar 

  25. Anoop B, Balaji C, Velusamy K. A characteristic correlation for heat transfer over serrated finned tubes. Ann Nucl Energy. 2015;85:1052–65. https://doi.org/10.1016/j.anucene.2015.07.025.

    Article  CAS  Google Scholar 

  26. Wen J, Li C, Hao H, Zhao X, Lei G, Wang S, et al. Numerical investigation on fin configuration improvement of 2K sub-atmospheric plate-fin heat exchangers for the superfluid helium cryogenic systems. Appl Thermal Eng. 2021. https://doi.org/10.1016/j.applthermaleng.2021.117290.

    Article  Google Scholar 

  27. Saleh B, Sundar LS. Experimental study on heat transfer, friction factor, entropy and exergy efficiency analyses of a corrugated plate heat exchanger using Ni/water nanofluids. Int J Thermal Sci. 2021. https://doi.org/10.1016/j.ijthermalsci.2021.106935.

    Article  Google Scholar 

  28. Sheikholeslami M, Jafaryar M, Shafee A, Li Z. Nanofluid heat transfer and entropy generation through a heat exchanger considering a new turbulator and CuO nanoparticles. J Therm Anal Calorim. 2018;134(3):2295–303. https://doi.org/10.1007/s10973-018-7866-7.

    Article  CAS  Google Scholar 

  29. Hosseinirad E, Esfahani JA, Hormozi F, Kim KC. Analysis of entropy generation and thermal–hydraulic of various plate-pin fin-splitter heat recovery systems using Al2O3/H2O nanofluid. Eur Phys J Plus. 2021. https://doi.org/10.1140/epjp/s13360-021-01540-7.

    Article  Google Scholar 

  30. Chávez-Modena M, González LM, Valero E. Numerical optimization of the fin shape experiments of a heat conjugate problem surface air/oil heat exchanger (SACOC). Int J Heat Mass Transf. 2022. https://doi.org/10.1016/j.ijheatmasstransfer.2021.121971.

    Article  Google Scholar 

  31. Liang C, Rao Y. Numerical study of turbulent flow and heat transfer in channels with detached pin fin arrays under stationary and rotating conditions. Int J Therm Sci. 2021. https://doi.org/10.1016/j.ijthermalsci.2020.106659.

    Article  Google Scholar 

  32. Deymi-Dashtebayaz M, Rezapour M, Farahnak M. Modeling of a novel nanofluid-based concentrated photovoltaic thermal system coupled with a heat pump cycle (CPVT-HP). Appl Therm Eng. 2022. https://doi.org/10.1016/j.applthermaleng.2021.117765.

    Article  Google Scholar 

  33. Kalantari H, Ghoreishi-Madiseh SA, Kurnia JC, Sasmito AP. An analytical correlation for conjugate heat transfer in fin and tube heat exchangers. Int J Therm Sci. 2021. https://doi.org/10.1016/j.ijthermalsci.2021.106915.

    Article  Google Scholar 

  34. Xiong Q, Izadi M, Shokri Rad M, Shehzad SA, Mohammed HA. 3D numerical study of conical and fusiform turbulators for heat transfer improvement in a double-pipe heat exchanger. Int J Heat Mass Transfer. 2021. https://doi.org/10.1016/j.ijheatmasstransfer.2021.120995.

    Article  Google Scholar 

  35. Richter-do-Nascimento CA, Mariani VC, Coelho LdS. Integrative numerical modeling and thermodynamic optimal design of counter-flow plate-fin heat exchanger applying neural networks. Int J Heat Mass Transfer. 2020. https://doi.org/10.1016/j.ijheatmasstransfer.2020.120097.

    Article  Google Scholar 

  36. Hekmatshoar M, Deymi-Dashtebayaz M, Gholizadeh M, Dadpour D, Delpisheh M. Thermoeconomic analysis and optimization of a geothermal-driven multi-generation system producing power, freshwater, and hydrogen. Energy. 2022. https://doi.org/10.1016/j.energy.2022.123434.

    Article  Google Scholar 

  37. Fiebig M, Valencia A, Mitra NK. Wing-type vortex generators for fin-and-tube heat exchangers. Exp Therm Fluid Sci. 1993. https://doi.org/10.1016/0894-1777(93)90052-K.

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the management and staff of Khorasan Razavi Province Gas Company for their generous financial and technical support in this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahdi Deymi-Dashtebayaz.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ravanbakhsh, M., Deymi-Dashtebayaz, M. & Rezapour, M. Multi-objective optimization of three different fins of the heat exchangers used in the domestic gas-fired water heaters: a hydrothermal performance and entropy generation analysis. J Therm Anal Calorim 148, 2069–2086 (2023). https://doi.org/10.1007/s10973-022-11831-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-022-11831-5

Keywords

Navigation