Skip to main content
Log in

Effects of illite–smectite clay minerals on the thermal evolution of aliphatic organic matter-clay complexes: a study with thermogravimetry coupled with Fourier transform infrared spectroscopy (TG-FTIR)

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Illite–smectite (I-Sm) clay minerals widely existed in clay-rich rocks or sediments. Understanding the effects of I-Sm clay minerals on the thermal evolution of organic matters (OMs) may facilitate interpreting hydrocarbon generation levels in petroleum basins and the global organic carbon cycle. In this study, mixed-layer I-Sm mineral rectorite (Rec), end-members montmorillonite (Mnt), and illite (Ilt) were chosen as the typical clay minerals and aliphatic organic compounds with different functional groups were selected as model OMs. Two kinds of OM-clay complexes, including OM-clay mixtures and OM-clay interlayer composite, were prepared. Pyrolysis experiment of OM-clay complexes were conducted via thermogravimetry coupled with Fourier transform infrared spectroscopy (TG-FTIR). TG-FTIR analysis showed that I-Sm clay minerals influenced the main thermal decomposition temperature (TM) and gas products of pyrolyzed OMs. Both Rec and Mnt decreased the TM of OMs and promoted decarboxylation, and the effect of Rec on TM was more obvious. Ilt had no significant effect on the TM and decarboxylation. Physicochemical property of the minerals showed that the solid acidity of the clay mineral was the key factor for the TM and types of thermal decomposition reaction (i.e., decarboxylation and C–C cleavage). Further analysis indicated that the functional groups of OMs affected the pyrolytic behaviors of OMs. OMs with cationic groups can be intercalated into the interlayers of clay minerals, which thus exhibited a high thermal stability. Functional groups such as alkyl chain and carboxyl groups had different binding effect with clay minerals, which leading to a difference of TM. Our results provide new insights into the role of I-Sm clay minerals in hydrocarbon generation in fine-grained sedimentary rocks as well as the geochemical behavior of organic carbon in response to inorganic minerals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Newman SP, Di Cristina T, Coveney PV, Jones W. Molecular dynamics simulation of cationic and anionic clays containing amino acids. Langmuir. 2002;18(7):2933–9.

    Article  CAS  Google Scholar 

  2. Ju Y, Wang G, Bu H, Li Q, Yan Z. China organic-rich shale geologic features and special shale gas production issues. J Rock Mech Geotech Eng. 2014;6(3):196–207.

    Article  Google Scholar 

  3. Zhu X, Cai J, Liu W, Lu X. Occurrence of stable and mobile organic matter in the clay-sized fraction of shale: Significance for petroleum geology and carbon cycle. Int J Coal Geol. 2016;160:1–10.

    Article  Google Scholar 

  4. Heller-Kallai L, Aizenshtat Z, Miloslavski I. The effect of various clay minerals on the thermal decomposition of stearic acid under “bulk flow” conditions. Clay Miner. 1984;19:779–88.

    Article  CAS  Google Scholar 

  5. Yuan P, Liu H, Liu D, Tan D, Yan W, He H. Role of the interlayer space of montmorillonite in hydrocarbon generation: an experimental study based on high temperature–pressure pyrolysis. Appl Clay Sci. 2013;75:82–91.

    Article  Google Scholar 

  6. Hower J, Eslinger EV, Hower ME, Perry EA. Mechanism of burial metamorphism of argillaceous sediment: 1 mineralogical and chemical evidence. Geol Soc Am Bull. 1976;87(5):725–37.

    Article  CAS  Google Scholar 

  7. Abid I, Hesse R. Illitizing fluids as precursors of hydrocarbon migration along transfer and boundary faults of the Jeanne d’Arc Basin offshore Newfoundland. Canada Mar Petrol Geol. 2007;24:237–45.

    Article  Google Scholar 

  8. Li Y, Cai J, Song G, Ji J. DRIFT spectroscopic study of diagenetic organic-clay interactions in argillaceous source rocks. Spectrochim Acta A. 2015;148:138–45.

    Article  CAS  Google Scholar 

  9. Burst JF. Diagenesis of Gulf Coast clayey sediments and its possible relation to petroleum migration. AAPG Bull. 1969;53(1):73–93.

    Google Scholar 

  10. Pollastro RM. Considerations and applications of the illite/smectite geothermometer in hydrocarbon-bearing rocks of Miocene to Mississippian age. Clays Clay Miner. 1993;41(2):119–33.

    Article  CAS  Google Scholar 

  11. Liu H, Yuan P, Qin Z, Liu D, Tan D, Zhu J, He H. Thermal degradation of organic matter in the interlayer clay–organic complex: a TG-FTIR study on a montmorillonite/12-aminolauric acid system. Appl Clay Sci. 2013;80–81:398–406.

    Article  Google Scholar 

  12. Whitelaw P, Uguna CN, Stevens LA, Meredith W, Snape CE, Vane CH, Moss-Hayes V, Carr AD. Shale gas reserve evaluation by laboratory pyrolysis and gas holding capacity consistent with field data. Nat Commun. 2019;10(1):1–10.

    Article  CAS  Google Scholar 

  13. Mackenzie AS, Li RW, Maxwell JR, Moldowan JM, Seifert WK. Molecular measurements of thermal maturation of Cretaceous shales from the Overthrust Belt, Wyoming, USA, Advances in Org. Geochem. 1981; Wiley Chichester, pp. 496–503.

  14. Tannenbaum E, Huizinga BJ, Kaplan IR. Role of minerals in thermal alteration of organic matter–II: a material balance. AAPG Bull. 1986;70(9):1156–65.

    CAS  Google Scholar 

  15. Lewan MD. Experiments on the role of water in petroleum formation. Geochim Cosmochim Acta. 1997;61:3691–723.

    Article  CAS  Google Scholar 

  16. Seewald JS. Aqueous geochemistry of low molecular weight hydrocarbons at elevated temperatures and pressures: constraints from mineral buffered laboratory experiments. Geochim Cosmochim Acta. 2001;65(10):1641–64.

    Article  CAS  Google Scholar 

  17. Bu H, Yuan P, Liu H, Liu D, Liu J, He H, Zhou J, Song H, Li Z. Effects of complexation between organic matter (OM) and clay mineral on OM pyrolysis. Geochim Cosmochim Acta. 2017;212:1–15.

    Article  CAS  Google Scholar 

  18. Song H, Liu H, Bu H, Liu D, Li Y, Du P. Effects of montmorillonite charge reduction on the high-temperature/high-pressure pyrolysis of organic matter. Appl Clay Sci. 2021;213: 106243.

    Article  CAS  Google Scholar 

  19. Wu LM, Zhou CH, Keeling J, Tong DS, Yu WH. Towards an understanding of the role of clay minerals in crude oil formation, migration and accumulation. Earth-Sci Rev. 2012;115(4):373–86.

    Article  CAS  Google Scholar 

  20. Hetényi M. Simulated thermal maturation of type I and III kerogens in the presence, and absence, of calcite and montmorillonite. Org Geochem. 1995;23(2):121–7.

    Article  Google Scholar 

  21. Geatches DL, Clark SJ, Greenwell HC. Role of clay minerals in oil-forming reactions. J Phys Chem A. 2010;114(10):3569–75.

    Article  CAS  Google Scholar 

  22. Johns WD, Shimoyama A. Clay minerals and petroleum-forming reactions during burial and diagenesis. AAPG Bull. 1972;56(11):2160–7.

    CAS  Google Scholar 

  23. Berthonneau J, Grauby O, Abuhaikal M, Pellenq RJM, Ulm FJ, Van Damme H. Evolution of organo-clay composites with respect to thermal maturity in type II organic-rich source rocks. Geochim Cosmochim Acta. 2016;195:68–83.

    Article  CAS  Google Scholar 

  24. Guven N. On a definition of illite/smectite mixed-layer. Clay Clay Miner. 1991;39(6):661–2.

    Article  CAS  Google Scholar 

  25. Bethke CM, Vergo N, Altaner SF. Pathways of smectite illitization. Clays Clay Miner. 1986;34:125–35.

    Article  Google Scholar 

  26. Jurg JW, Eisma E. Petroleum hydrocarbons: generation from fatty acid. Science. 1964;144(3625):1451–2.

    Article  CAS  Google Scholar 

  27. Liu W, Xu Y, Shi J, Lei H, Zhang B. Evolution model and formation mechanism of bio-thermocatalytic transitional zone gas. SCI China Ser D. 1997;40(1):43–53.

    Article  CAS  Google Scholar 

  28. Wattel-Koekkoek EJW, Van Genuchten PPL, Buurman P, Van Lagen B. Amount and composition of clay-associated soil organic matter in a range of kaolinitic and smectitic soils. Geoderma. 2001;99(1–2):27–49.

    Article  CAS  Google Scholar 

  29. Vranova V, Rejsek K, Formanek P. Aliphatic, cyclic, and aromatic organic acids, vitamins, and carbohydrates in soil: a review. Sci World J. 2013. https://doi.org/10.1155/2013/524239.

    Article  Google Scholar 

  30. Rogers DE. Thermal analysis of octadecanoic acid and some of its salts. Thermochim Acta. 1984;77(1–3):123–32.

    Article  CAS  Google Scholar 

  31. Shimoyama A, Johns WD. Catalytic conversion of fatty acids to petroleum-like paraffins and their maturation. Nat Rev Phys. 1971;232(33):140–4.

    CAS  Google Scholar 

  32. Zafar R, Watson JS. Adsorption of tetradecanoic acid on kaolinite minerals: using flash pyrolysis to characterise the catalytic efficiency of clay mineral adsorbed fatty acids. Chem Geol. 2017;471:111–8.

    Article  CAS  Google Scholar 

  33. Daniels EJ, Altaner SP. Clay mineral authigenesis in coal and shale from the Anthracite region. Pennsylvania Am Miner. 1990;75:825–39.

    CAS  Google Scholar 

  34. Pozo M, Pino D, Bessieres D. Effect of thermal events on maturation and methane adsorption of Silurian black shales (Checa, Spain). Appl Clay Sci. 2017;136:208–18.

    Article  CAS  Google Scholar 

  35. Hong H, Zhang X, Wan M, Hou Y, Du D. Morphological characteristics of (K, Na)-rectorite from Zhongxiang rectorite deposit, Hubei. Central China J China Univ Geosci. 2008;19(1):38–46.

    Article  CAS  Google Scholar 

  36. Negrón-Mendoza A, Ramos S, Albarrán G. Enhance decarboxylation reaction of carboxylic acids in clay minerals. Radiat Phys Chem. 1995;46(4–6):565–8.

    Article  Google Scholar 

  37. Liu D, Yuan P, Liu H, Cai J, Qin Z, Tan D, Zhou Q, He H, Zhu J. Influence of heating on the solid acidity of montmorillonite: a combined study by DRIFT and Hammett indicators. Appl Clay Sci. 2011;52(4):358–63.

    Article  CAS  Google Scholar 

  38. Huang NP, Michel R, Voros J, Textor M, Hofer R, Rossi A, Spencer ND. Poly (L-lysine)-g-poly (ethylene glycol) layers on metal oxide surfaces: surface-analytical characterization and resistance to serum and fibrinogen adsorption. Langmuir. 2001;17(2):489–98.

    Article  CAS  Google Scholar 

  39. Pitkänen I, Huttunen J, Halttunen H, Vesterinen R. Evolved gas analysis of some solid fuels by TG-FTIR. J Therm Anal Calorim. 1991;56(3):1253–9.

    Article  Google Scholar 

  40. Jandura P, Kokta BV, Riedl B. Fibrous long-chain organic acid cellulose esters and their characterization by diffuse reflectance FTIR spectroscopy, solid-state CP/MAS 13C-NMR, and X-ray diffraction. J Appl Polym Sci. 2000;78(7):1354–65.

    Article  CAS  Google Scholar 

  41. Marcilla A, Gómez A, Menargues S. TGA/FTIR study of the catalytic pyrolysis of ethylene–vinyl acetate copolymers in the presence of MCM-41. Polym Degrad Stab. 2005;89(1):145–52.

    Article  CAS  Google Scholar 

  42. Rupert JP, Granquist WT, Pinnavaia TJ. Catalytic properties of clay minerals. In: Newman ACD, editor. Chemistry of clays and clay minerals. New York: Longman scientific and technical. 1987; 6: 275–318.

  43. Goldstein TP. Geocatalytic reactions in formation and maturation of petroleum. AAPG Bull. 1983;67(1):152–9.

    CAS  Google Scholar 

  44. Reddy CR, Bhat YS, Nagendrappa G, Prakash BJ. Brønsted and Lewis acidity of modified montmorillonite clay catalysts determined by FT-IR spectroscopy. Catal Today. 2009;141(1–2):157–60.

    Article  CAS  Google Scholar 

  45. Singh B, Patial J, Sharma P, Agarwal SG, Qazi GN, Maity S. Influence of acidity of montmorillonite and modified montmorillonite clay minerals for the conversion of longifolene to isolongifolene. J Mol Catal A: Chem. 2007;266(1–2):215–20.

    Article  CAS  Google Scholar 

  46. Johns WD. Clay mineral catalysis and petroleum generation. Annu Rev Earth Planet Sci. 1979;7(1):183–98.

    Article  CAS  Google Scholar 

  47. Greensfelder BS, Voge HH, Good GM. Catalytic and thermal cracking of pure hydrocarbons: mechanisms of Reaction. Ind Eng Chem. 1949;41(11):2573–84.

    Article  CAS  Google Scholar 

  48. Liu H, Yuan P, Liu D, Bu H, Song H, Qin Z, He H. Pyrolysis behaviors of organic matter (OM) with the same alkyl main chain but different functional groups in the presence of clay minerals. Appl Clay Sci. 2018;153:205–16.

    Article  CAS  Google Scholar 

  49. Newman ACD. Chemistry of clays and clay minerals. New York: Wiley-Inter science; 1987.

    Google Scholar 

  50. Rupert JP, Granquist WT, Pinnavaia TJ. Catalytic properties of clay minerals. In: Newman ACD, editor. Chemistry of clays and clay minerals. New York: Longman scientific and technical. 1987; 6: 275–318.

  51. Shi L, Liu Q, Guo X, Wu W, Liu Z. Pyrolysis behavior and bonding information of coal—A TGA study. Fuel Process Technol. 2013;108:125–32.

    Article  CAS  Google Scholar 

  52. Mishra RK, Mohanty K. Thermal and catalytic pyrolysis of pine sawdust (Pinus ponderosa) and Gulmohar seed (Delonix regia) towards production of fuel and chemicals. Mater Sci Tech lond. 2019;2(2):139–49.

    Google Scholar 

  53. Underwood T, Erastova V, Cubillas P, Greenwell HC. Molecular dynamic simulations of montmorillonite–organic interactions under varying salinity: an insight into enhanced oil recovery. J Phys Chem C. 2015;119(13):7282–94.

    Article  CAS  Google Scholar 

  54. Xi Y, Ding Z, He H, Frost RL. Structure of organoclays—an X-ray diffraction and thermogravimetric analysis study. J Colloid Interface Sci. 2004;277(1):116–20.

    Article  CAS  Google Scholar 

  55. Ghavami M, Zhao Q, Javadi S, Jangam JSD, Jasinski JB, Saraei N. Change of organobentonite interlayer microstructure induced by sorption of aromatic and petroleum hydrocarbons—A combined study of laboratory characterization and molecular dynamics simulations. Colloid Surfaces A. 2017;520:324–34.

    Article  CAS  Google Scholar 

  56. Davis R, Gilman J, Sutto T, Callahan HJ, Trulove P, De Long H. Improved thermal stability of organically modified layered silicates. Clay Clay Miner. 2004;52(2):171–9.

    Article  CAS  Google Scholar 

  57. Cui L, Hunter DL, Yoon PJ, Paul DR. Effect of organoclay purity and degradation on nanocomposite performance, part 2: morphology and properties of nanocomposites. Polymer. 2008;49(17):3762–9.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (41802039; 41972046; 42025705; 42002040), GDAS’ Project of Science and Technology Development (2020GDASYL-20200102019) and the Science and Technology Planning Project of Guangdong Province, China (2017BT01Z176).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongling Bu.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 3224 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bu, H., Wei, Y., Liu, C. et al. Effects of illite–smectite clay minerals on the thermal evolution of aliphatic organic matter-clay complexes: a study with thermogravimetry coupled with Fourier transform infrared spectroscopy (TG-FTIR). J Therm Anal Calorim 148, 741–752 (2023). https://doi.org/10.1007/s10973-022-11829-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-022-11829-z

Keywords

Navigation