Skip to main content
Log in

Assessment of thermal loading in energy-efficient buildings: parametric review on the window design aspects

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Today, the main challenge to world energy policies is to complete the energy demands of society more sustainably without polluting the environment. The application of renewable energy sources is an alternative solution, but they are less efficient compared to conventional sources. The efficient utilization of energy ensuring the minimum losses from the system is an effective way. In this context, properly designed buildings can contribute in minimizing the overall energy demands of society. Generally, window systems are considered a critical part of a building with significantly poor thermal performance. Those must be designed carefully for the building to be energy efficient. The present work takes an opportunity to review several design parameters (window) affecting the annual energy consumption statistics (in terms of cooling and heating loads) for the buildings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

I :

Solar radiation intensity (Wm−2)

IEA:

International energy agency

GHG:

Greenhouse gases

Mtoe:

Million tons of standard coal equivalent

PCM:

Phase change material

SHGC:

Solar heat gain coefficient

U :

Overall heat transfer coefficient (Wm−2 K−1)

WWR:

Window-to-wall ratio

NDPCM:

Nano-disbanded phase change materials

T VLS :

Transmittance

θ :

Angle of incidence (Degrees)

ϕ :

Volume fraction

T ambient :

Ambient temperature (K)

T local :

Local temperature (K)

BIM:

Building information modeling

R net :

Net thermal resistance (KW−1)

h i :

Internal convection heat transfer coefficient (Wm−2 K−1)

h o :

Internal convection heat transfer coefficient (Wm−2 K−1)

L p :

Pane thickness (m)

K p :

Thermal conductivity of pane material (Wm−1 K−1)

R ins :

Thermal resistance of insulating material (KW−1)

References

  1. British Petroleum. PLC BP World Energy Outlook for 2035. Available at: http://www.bp.com/zh_cn/china/reports-and-publications/bp_20351.html. Accessed date: 16 August 2022.

  2. Renewable energy share to the Global energy demand. Available at: https://www.iea.org/reports/global-energy-review-2021/renewables. Accessed date: 16 August 2022.

  3. Pérez-Lombard L, Ortiz J, Pout C. A review on buildings energy consumption information. Energy Build. 2008;40(3):394–8. https://doi.org/10.1016/j.enbuild.2007.03.007.

    Article  Google Scholar 

  4. Syal M, Hastak M, Mullens M, Sweaney A. United States-India collaborative research directions in urban housing and supporting infrastructure. J Archit Eng. 2006;12(4):163–7. https://doi.org/10.1061/(ASCE)1076-0431(2006)12:4(163).

    Article  Google Scholar 

  5. Apergis N, Payne JE. Per capita carbon dioxide emissions across US states by sector and fossil fuel source: evidence from club convergence tests. Energy Econom. 2017;63:365–72. https://doi.org/10.1016/j.eneco.2016.11.027.

    Article  Google Scholar 

  6. Zhang Y, He CQ, Tang BJ, Wei YM. China’s energy consumption in the building sector: a life cycle approach. Energy Build. 2015;94:240–51. https://doi.org/10.1016/j.enbuild.2015.03.011.

    Article  Google Scholar 

  7. Ma YX, Yu C. Impact of meteorological factors on high-rise office building energy consumption in Hong-Kong: from a spatiotemporal perspective. Energy Build. 2020;228:110468. https://doi.org/10.1016/j.enbuild.2020.110468.

    Article  Google Scholar 

  8. India energy dashboards, NitiAyog. Available at: https://www.niti.gov.in/edm/#balance. Accessed date: 18 August 2022.

  9. Troup L, Phillips R, Eckelman MJ, Fannon D. Effect of window-to-wall ratio on measured energy consumption in US office buildings. Energy Build. 2019;203:109434. https://doi.org/10.1016/j.enbuild.2019.109434.

    Article  Google Scholar 

  10. Qu J, Song J, Qin J, Song Z, Zhang W, Shi Y, Zhang T, Zhang H, Zhang R, He Z, Xue X. Transparent thermal insulation coatings for energy efficient glass windows and curtain walls. Energy Build. 2014;77:1–10. https://doi.org/10.1016/j.enbuild.2014.03.032.

    Article  Google Scholar 

  11. Hart R, Selkowitz S, Curcija C. Thermal performance and potential annual energy impact of retrofit thin-glass triple-pane glazing in US residential buildings. Build Simul. 2019;12(1):79–86. https://doi.org/10.1007/s12273-018-0491-3.

    Article  Google Scholar 

  12. Ke Y, Zhou C, Zhou Y, Wang S, Chan SH, Long Y. Emerging thermal-responsive materials and integrated techniques targeting the energy-efficient smart window application. Adv Funct Mater. 2018;28(22):1800113. https://doi.org/10.1002/adfm.201800113.

    Article  CAS  Google Scholar 

  13. Jelle BP, Hynd A, Gustavsen A, Arasteh D, Goudey H, Hart R. Fenestration of today and tomorrow: a state-of-the-art review and future research opportunities. Sol Energy MaterSol Cells. 2012;96:1–28. https://doi.org/10.1016/j.solmat.2011.08.010.

    Article  CAS  Google Scholar 

  14. Uetsuji Y, Yasuda Y, Yamauchi S, Matsushima E, Adachi M, Fuji M, Ito H. Multiscale study on thermal insulating effect of a hollow silica-coated polycarbonate window for residential buildings. Renew Sustain Energy Rev. 2021;152:111718. https://doi.org/10.1016/j.rser.2021.111718.

    Article  CAS  Google Scholar 

  15. Figueroa-Lopez A, Arias A, Oregi X, Rodríguez I. Evaluation of passive strategies, natural ventilation and shading systems, to reduce overheating risk in a passive house tower in the north of Spain during the warm season. J Build Eng. 2021;43:102607. https://doi.org/10.1016/j.jobe.2021.102607.

    Article  Google Scholar 

  16. Chi F, Xu Y, Pan J. Impact of shading systems with various type-number configuration combinations on energy consumption in traditional dwelling (China). Energy. 2022;255:124520. https://doi.org/10.1016/j.energy.2022.124520.

    Article  Google Scholar 

  17. Mathur U, Damle R. Impact of air infiltration rate on the thermal transmittance value of building envelope. J Build Eng. 2021;40:102302. https://doi.org/10.1016/j.jobe.2021.102302.

    Article  Google Scholar 

  18. Hasper W, Kirtschig T, Siddall M, Johnston D, Vallentin G, Harvie-Clark J. Long-term performance of passive house buildings. Energy Effic. 2021;14:5. https://doi.org/10.1007/s12053-020-09913-0.

    Article  Google Scholar 

  19. Yao J, Huang Y, Cheng K. Coupling effect of building design variables on building energy performance. Case Stud Therm Eng. 2021;27:101323. https://doi.org/10.1016/j.csite.2021.101323.

    Article  Google Scholar 

  20. Kumar D, Alam M, Zou PXW, Sanjayan JG, Memon RA. Comparative analysis of building insulation material properties and performance. Renew Sustain Energy Rev. 2020;131:110038. https://doi.org/10.1016/j.rser.2020.110038.

    Article  Google Scholar 

  21. Cuce E, Riffat SB. A state-of-the-art review on innovative glazing technologies. Renew Sustain Energy Rev. 2015;41:8695–714. https://doi.org/10.1016/j.rser.2014.08.084.

    Article  Google Scholar 

  22. Xu S, Ganapathysubramanian B. Computational investigation of the impact of glass flexure on thermal efficiency of double-pane windows. J Therm Anal Calorim. 2021;145:559–67. https://doi.org/10.1007/s10973-020-09704-w.

    Article  CAS  Google Scholar 

  23. Bui DK, Nguyen TN, Ghazlan A, Ngo TD. Biomimetic adaptive electrochromic windows for enhancing building energy efficiency. Appl Energy. 2021;300:117341. https://doi.org/10.1016/j.apenergy.2021.117341.

    Article  Google Scholar 

  24. Aburas M, Ebendorff-Heidepriem H, Lei L, Li M, Zhao J, Williamson T, Wu Y, Soebarto V. Smart windows- Transmittance tuned thermochromic coatings for dynamic control of building performance. Energy Build. 2021;235:110717. https://doi.org/10.1016/j.enbuild.2021.110717.

    Article  Google Scholar 

  25. Jiang T, Zhao X, Yin X, Yang R, Tan G. Dynamically adaptive window design with thermo-responsive hydrogel for energy efficiency. Appl Energy. 2021;287:116573. https://doi.org/10.1016/j.apenergy.2021.116573.

    Article  CAS  Google Scholar 

  26. Zhang S, Hu W, Li D, Zhang C, Arıcı M, Yıldız Ç, Zhang X, Ma Y. Energy efficiency optimization of PCM and aerogel-filled multiple glazing windows. Energy. 2021;222:119916. https://doi.org/10.1016/j.energy.2021.119916.

    Article  CAS  Google Scholar 

  27. Kaushik N, Kumar PS, Dhanasekhar S, Saminathan R, Rinawa ML, Subbiah R, Sharma R, Kumar PM. Thermal analysis of a double-glazing window using a nano-disbanded phase changing material (NDPCM). Mater Today Proc. 2022;62(4):1702–7. https://doi.org/10.1016/j.matpr.2021.11.537.

    Article  CAS  Google Scholar 

  28. Meng Y, Tan Y, Li X, Cai Y, Peng J, Long Y. Building-integrated photovoltaic smart window with energy generation and conservation. Appl Energy. 2022;324:119676. https://doi.org/10.1016/j.apenergy.2022.119676.

    Article  Google Scholar 

  29. Zhang E, Duan Q, Wang J, Zhao Y, Feng Y. Experimental and numerical analysis of the energy performance of building windows with solar NIR-driven plasmonic photothermal effects. Energy Convers Manag. 2021;245:114594. https://doi.org/10.1016/j.enconman.2021.114594.

    Article  Google Scholar 

  30. Zhou Y, Wang S, Peng J, Tan Y, Li C, Boey FYC, Long Y. Liquid thermo-responsive smart window derived from Hydrogel. Joule. 2020;4(11):2458–74. https://doi.org/10.1016/j.joule.2020.09.001.

    Article  CAS  Google Scholar 

  31. Sabatiuk PA. Review of gas filled window technology: summary report. In: Proc ASHRAE/DOE Conf–thermal performance of the exterior envelopes of buildings. 1983. vol. 2 p. 643–53.

  32. Ebisawa J, Ando E. Solar control coating on glass. Curr Opin Solid State Mater Sci. 1998;3(4):386–90. https://doi.org/10.1016/S1359-0286(98)80049-1.

    Article  CAS  Google Scholar 

  33. Baetens R, Jelle BP, Gustavsen A. Properties, requirements and possibilities of smart windows for dynamic daylight and solar energy control in buildings: a state-of-the-art review. Sol Energy Mater Sol Cells. 2010;94(2):87–105. https://doi.org/10.1016/j.solmat.2009.08.021.

    Article  CAS  Google Scholar 

  34. Fang Y, Eames PC, Norton B. Effect of glass thickness on the thermal performance of evacuated glazing. Sol Energy. 2007;81(3):395–404. https://doi.org/10.1016/j.solener.2006.05.004.

    Article  Google Scholar 

  35. Fang Y, Memon S, Peng J, Tyrer M, Ming T. Solar thermal performance of two innovative configurations of air-vacuum layered triple glazed windows. Renew Energy. 2020;150:167–75. https://doi.org/10.1016/j.renene.2019.12.115.

    Article  Google Scholar 

  36. Li D, Wu Y, Liu C, Zhang G, Arıcı M. Numerical investigation of thermal and optical performance of window units filled with nanoparticle enhanced PCM. Int J Heat Mass Transf. 2018;125:1321–32. https://doi.org/10.1016/j.ijheatmasstransfer.2018.04.152.

    Article  CAS  Google Scholar 

  37. Lv Y, Wu H, Liu Y, Huang Y, Xu T, Zhou X, Huang R. Quantitative research on the influence of particle size and filling thickness on aerogel glazing performance. Energy Build. 2018;174:190–8. https://doi.org/10.1016/j.enbuild.2018.06.026.

    Article  Google Scholar 

  38. Nia MF, Nassab SAG, Ansari AB. Transient numerical simulation of multiple pane windows filling with radiating gas. Int Commun Heat Mass Transf. 2019;108:104291. https://doi.org/10.1016/j.icheatmasstransfer.2019.104291.

    Article  Google Scholar 

  39. Lyu Y, Zheng S, Zhuo K, Su H, Li J, Liu C. Experimental and numerical performance investigation of a water-flow window with vacuum-glazing insulation. Sol Energy. 2022;233:259–70. https://doi.org/10.1016/j.solener.2022.01.034.

    Article  Google Scholar 

  40. Raza A, Jost S, Dubail M, Dumortier D. Categorizing color shifts due to tinted glazing via dominant colors of the scene. Color Res Appl. 2021;46(3):623–34. https://doi.org/10.1002/col.22629.

    Article  Google Scholar 

  41. Carmody J. High performance windows and facades. Centre for sustainable building research (CSBR), University of Minnesota.

  42. Cao X, Chang T, Shao Z, Xu F, Luo H, Jin P. Challenges and opportunities toward real application of VO2-based smart glazing. Matter. 2020;2(4):862–81. https://doi.org/10.1016/j.matt.2020.02.009.

    Article  Google Scholar 

  43. Liu X, Wu Y. Experimental characterisation of a smart glazing with tuneable transparency, light scattering ability and electricity generation function. Appl Energy. 2021;303:117521. https://doi.org/10.1016/j.apenergy.2021.117521.

    Article  CAS  Google Scholar 

  44. Ke Y, Chen J, Lin G, Wang S, Zhou Y, Yin J, Lee PS, Long Y. Smart windows: electro-, thermo-, mechano-, photochromics, and beyond. Adv Energy Mater. 2019;9(39):1902066. https://doi.org/10.1002/aenm.201902066.

    Article  CAS  Google Scholar 

  45. Behera A. Chromogenic materials. In: Advanced materials. Cham:Springer; 2022. p.157–191. https://doi.org/10.1007/978-3-030-80359-9_5.

  46. Granqvist CG, Arvizu MA, Pehlivan IB, Qu HY, Wen RT, Niklasson GA. Electrochromic materials and devices for energy efficiency and human comfort in buildings: a critical review. Electrochim Acta. 2018;259:1170–82. https://doi.org/10.1016/j.electacta.2017.11.169.

    Article  CAS  Google Scholar 

  47. Kamalisarvestani M, Saidur R, Mekhilef S, Javadi FS. Performance, materials and coating technologies of thermochromic thin films on smart windows. Renew Sustain Energy Rev. 2013;26:353–64. https://doi.org/10.1016/j.rser.2013.05.038.

    Article  CAS  Google Scholar 

  48. Zakirullin RS. Chromogenic materials in smart windows for angular-selective filtering of solar radiation. Mater Today Energy. 2020;17:100476. https://doi.org/10.1016/j.mtener.2020.100476.

    Article  Google Scholar 

  49. Cannavale A, Zampini G, Carlucci F, Pugliese M, Martellotta F, Ayr U, Maiorano V, Ortica F, Fiorito F, Latterini L. Energy and daylighting performance of building integrated spirooxazinephotochromic films. Sol Energy. 2022;242:424–34. https://doi.org/10.1016/j.solener.2021.10.058.

    Article  CAS  Google Scholar 

  50. Hočevar M, Krašovec UO. A photochromic single glass pane. Sol Energy Mater Sol Cells. 2018;186:111–4. https://doi.org/10.1016/j.solmat.2018.06.035.

    Article  CAS  Google Scholar 

  51. Fathi S, Kavoosi A. Effect of electrochromic windows on energy consumption of high-rise office buildings in different climate regions of Iran. Sol Energy. 2021;223:132–49. https://doi.org/10.1016/j.solener.2021.05.021.

    Article  Google Scholar 

  52. Xu Y, Yan C, Yan S, Liu H, Pan Y, Zhu F, Jiang Y. A multi-objective optimization method based on an adaptive meta-model for classroom design with smart electrochromic windows. Energy. 2022;243:122777. https://doi.org/10.1016/j.energy.2021.122777.

    Article  Google Scholar 

  53. Arnesano M, Pandarese G, Martarelli M, Naspi F, Gurunatha KL, Sol C, Portnoi M, Ramirez FV, Parkin IP, Papakonstantinou I, Revel GM. Optimization of the thermochromic glazing design for curtain wall buildings based on experimental measurements and dynamic simulation. Sol Energy. 2021;216:14–25. https://doi.org/10.1016/j.solener.2021.01.013.

    Article  Google Scholar 

  54. Haratoka C, Yalcin RA, Erturk H. Design of thermo-chromic glazing windows considering energy consumption and visual comfort for cellular offices. Sol Energy. 2022;241:637–49. https://doi.org/10.1016/j.solener.2022.06.025.

    Article  Google Scholar 

  55. Ke Y, Tan Y, Feng C, Chen C, Lu Q, Xu Q, Wang T, Liu H, Liu X, Peng J, Long Y. Tetra-fish-inspired aesthetic thermochromic windows toward energy-saving buildings. Appl Energy. 2022;315:119053. https://doi.org/10.1016/j.apenergy.2022.119053.

    Article  CAS  Google Scholar 

  56. Sun Y, Wilson R, Liu H, Wu Y. Numerical investigation of a smart window system with thermotropic parallel slat transparent insulation material for building energy conservation and daylight autonomy. Build Environ. 2021;203:108048. https://doi.org/10.1016/j.buildenv.2021.108048.

    Article  Google Scholar 

  57. Teixeira H, Gomes MG, Rodrigues AM, Aelenei D. Assessment of the visual, thermal and energy performance of static vs thermochromic double-glazing under different European climates. Build Environ. 2022;217:109115. https://doi.org/10.1016/j.buildenv.2022.109115.

    Article  Google Scholar 

  58. Hong X, Shi F, Wang S, Yang X, Yang Y. Multi-objective optimization of thermochromic glazing based on daylight and energy performance evaluation. Build Simul. 2021;14:1685–95. https://doi.org/10.1007/s12273-021-0778-7.

    Article  Google Scholar 

  59. Tsikaloudaki K, Laskos K, Theodosiou T, Bikas D. The energy performance of windows in Mediterranean regions. Energy Build. 2015;92:180–7. https://doi.org/10.1016/j.enbuild.2015.01.059.

    Article  Google Scholar 

  60. Pathirana S, Rodrigo A, Halwatura R. Effect of building shape, orientation, window to wall ratios and zones on energy efficiency and thermal comfort of naturally ventilated houses in tropical climate. Int J Energy Environ Eng. 2019;10:107–20. https://doi.org/10.1007/s40095-018-0295-3.

    Article  Google Scholar 

  61. Bouchlaghem N. Optimising the design of building envelopes for thermal performance. J Autom Constr. 2000;10:101–12. https://doi.org/10.1016/S0926-5805(99)00043-6.

    Article  Google Scholar 

  62. Alwetaishi M. Impact of glazing to wall ratio in various climatic regions: a case study. J King Saud Univ Eng Sci. 2019;31:6–18. https://doi.org/10.1016/j.jksues.2017.03.001.

    Article  Google Scholar 

  63. Marino C, Nucara A, Pietrafesa M. Does window-to-wall ratio have a significant effect on the energy consumption of buildings? A parametric analysis in Italian climate conditions. J Build Eng. 2017;13:169–83. https://doi.org/10.1016/j.jobe.2017.08.001.

    Article  Google Scholar 

  64. Yang Q, Liu M, Shu C, Mmereki D, Hossain MU, Zhan X. Impact analysis of window-wall ratio on heating and cooling energy consumption of residential buildings in hot summer and cold winter zone in China. J Eng. 2015;2015:538254. https://doi.org/10.1155/2015/538254.

    Article  Google Scholar 

  65. Alwetaishi MS. Human thermal comfort and building performance of schools in hot and humid climate with a particular reference to Saudi Arabia. Jeddah. PhD diss: University of Nottingham; 2015.

    Google Scholar 

  66. Zhao K, Lv G, Shen C, Ge J. Investigating the effect of solar heat gain on intermittent operation characteristics of radiant cooling floor. Energy Build. 2022;255:111628. https://doi.org/10.1016/j.enbuild.2021.111628.

    Article  Google Scholar 

  67. Bhatia A, Sangireddy SAR, Garg V. An approach to calculate the equivalent solar heat gain coefficient of glass windows with fixed and dynamic shading in tropical climates. J Build Eng. 2019;22:90–100. https://doi.org/10.1016/j.jobe.2018.11.008.

    Article  Google Scholar 

  68. Kersken M. Method for the climate-independent determination of the solar heatgain coefficient (SHGC; g-value) of transparent façade and membraneconstructions from in situ measurements. Energy Build. 2021;239:110866. https://doi.org/10.1016/j.enbuild.2021.110866.

    Article  Google Scholar 

  69. Ghosh A, Neogi S. Effect of fenestration geometrical factors on building energy consumption and performance evaluation of a new external solar shading device in warm and humid climatic condition. Sol Energy. 2018;169:94–104. https://doi.org/10.1016/j.solener.2018.04.025.

    Article  Google Scholar 

  70. Kim S, Zadeh PA, Staub-French S, Froese T, Cavka BT. Assessment of the impact of window size, position and orientation on building energy load using BIM. Proced Eng. 2016;145:1424–31. https://doi.org/10.1016/j.proeng.2016.04.179.

    Article  Google Scholar 

  71. Kumar GK, Saboor S, Kumar V, Kim KH, Babu TPA. Experimental and theoretical studies of various solar control window glasses for the reduction of cooling and heating loads in buildings across different climatic regions. Energy Build. 2018;173:326–36. https://doi.org/10.1016/j.enbuild.2018.05.054.

    Article  Google Scholar 

  72. Yin S, Wang F, Xiao Y, Xue S. Comparing cooling efficiency of shading strategies for pedestrian thermal comfort in street canyons of traditional shophouse neighbourhoods in Guangzhou. China Urban Clim. 2022;43:101165. https://doi.org/10.1016/j.uclim.2022.101165.

    Article  Google Scholar 

  73. Alhuwayil WK, Mujeebu MA, Algarny AMM. Impact of external shading strategy on energy performance of multistory hotel building in hot-humid climate. Energy. 2019;169:1166–74. https://doi.org/10.1016/j.energy.2018.12.069.

    Article  Google Scholar 

  74. Skarning GCJ, Hviid CA, Svendsen S. The effect of dynamic solar shading on energy, daylighting and thermal comfort in a nearly zero-energy loft room in Rome and Copenhagen. Energy Build. 2017;135:302–11. https://doi.org/10.1016/j.enbuild.2016.11.053.

    Article  Google Scholar 

  75. Evangelisti L, Guattari C, Asdrubali F, de LietoVollaro R. An experimental investigation of the thermal performance of a building solar shading device. J Build Eng. 2020;28:101089. https://doi.org/10.1016/j.jobe.2019.101089.

    Article  Google Scholar 

  76. Ye Y, Xu P, Sha H, Yue P, Zhang H. ShadingPlus-a fast simulation tool for building shading analysis. Energy Effic. 2016;9:239–48. https://doi.org/10.1007/s12053-015-9360-4.

    Article  Google Scholar 

  77. Invidiata A, Ghisi E. Life-cycle energy and cost analyses of window shading used to improve the thermal performance of houses. J Clean Prod. 2016;133:1371–83. https://doi.org/10.1016/j.jclepro.2016.06.072.

    Article  Google Scholar 

  78. Huo H, Xu W, Li A, Lv Y, Liu C. Analysis and optimization of external venetian blind shading for nearly zero-energy buildings in different climate regions of China. Sol Energy. 2021;223:54–71. https://doi.org/10.1016/j.solener.2021.05.046.

    Article  Google Scholar 

  79. Liu S, Kwok YT, Ka-Lun Lau K, Chan PW, Ng E. Investigating the energy saving potential of applying shading panels on opaque façades: a case study for residential buildings in Hong Kong. Energy Build. 2019;193:78–91. https://doi.org/10.1016/j.enbuild.2019.03.044.

    Article  Google Scholar 

  80. Cuce E, Riffat SB. Vacuum tube window technology for highly insulating building fabric: an experimental and numerical investigation. Vacuum. 2015;111:83–91. https://doi.org/10.1016/j.vacuum.2014.10.002.

    Article  CAS  Google Scholar 

  81. Cuce E. Accurate and reliable U-value assessment of argon-filled double glazed windows: a numerical and experimental investigation. Energy Build. 2018;171:100–6. https://doi.org/10.1016/j.enbuild.2018.04.036.

    Article  Google Scholar 

  82. Fazel A, Izadi A, Azizi M. Low-cost solar thermal based adaptive window: combination of energy-saving and self-adjustment in buildings. Sol Energy. 2016;133:274–82. https://doi.org/10.1016/j.solener.2016.04.008.

    Article  Google Scholar 

  83. Dussault JM, Gosselin L, Galstian T. Integration of smart windows into building design for reduction of yearly overall energy consumption and peak loads. Sol Energy. 2012;86(11):3405–16. https://doi.org/10.1016/j.solener.2012.07.016.

    Article  Google Scholar 

  84. Didoné EL, Wagner A. Semi-transparent PV windows: a study for office buildings in Brazil. Energy Build. 2013;67:136–42. https://doi.org/10.1016/j.enbuild.2013.08.002.

    Article  Google Scholar 

  85. Tavares P, Bernardo H, Gaspar A, Martins A. Control criteria of electrochromic glasses for energy savings in mediterranean buildings refurbishment. Sol Energy. 2016;134:236–50. https://doi.org/10.1016/j.solener.2016.04.022.

    Article  Google Scholar 

  86. Goia F, Zinzi M, Carnielo E, Serra V. Spectral and angular solar properties of a PCM-filled double glazing unit. Energy Build. 2015;87:302–12. https://doi.org/10.1016/j.enbuild.2014.11.019.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

VS: Methodology, Content, and Writing; NG: Writing and Data extraction; AS: Language editing and Data arrangement; SB: Proof reading and Correction; AD: Correction and Data extraction; VG: Supervision, Proof reading, and Correction.

Corresponding author

Correspondence to Varun Goel.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shree, V., Goyal, N., Saxena, A. et al. Assessment of thermal loading in energy-efficient buildings: parametric review on the window design aspects. J Therm Anal Calorim 148, 2703–2718 (2023). https://doi.org/10.1007/s10973-022-11815-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-022-11815-5

Keywords

Navigation