Skip to main content
Log in

The effect of the flow and solid matrix parameters on the Nusselt number for free convection over horizontal cylinder by considering the boundary layer and local thermal non-equilibrium model

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In this study, the local thermal non-equilibrium model (LTNE) and the parabolic boundary layer governing differential equations were used to investigating the effect of the flow and solid matrix parameters on the Nusselt number for free convection over a horizontal cylinder embedded in a saturated infinite packed bed. The Forchheimer–Brinkman-extended Darcy and the local thermal non-equilibrium scheme were solved by the Keller box numerical method. Using the variables of the boundary layer, the physical environment is transferred to a rectangular computational domain; then with the new variables, one order of the derivatives of the equations is reduced and the three-diagonal matrix of the coefficients is calculated. The impacts of the porosity, thermal conductivity ratio, Rayleigh number, the ratio of cylinder diameter to spherical particle diameter and Biot number parameters on the local and average Nusselt number have been studied. The obtained results showed that, the increasing Rayleigh number and porosity increase the mean Nusselt number of two phases. In such a way that increasing the porosity from 0.2 to 0.85 can increase the Nusselt of fluid by 8 times. Also, increasing the ratio of cylinder diameter to spherical particle diameter from 20 to 100 causes the mean fluid Nusselt to decrease by 64%. In addition, increasing the ratio of solid to fluid conductivity and Biot number reduces the average Nusselt of the fluid. Except for the Rayleigh number, the changes of other fluid and solid parameters did not have a significant effect on the amount of solid Nusselt.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

\(a\) :

Radius of the cylinder (m)

\({a}_{\mathrm{sf}}\) :

Specific surface area (m−1)

\(\mathrm{Bi}\) :

Biot number, \(\mathrm{Bi}=\frac{{h}_{\mathrm{sf}}{a}_{\mathrm{sf}}{a}^{2}}{{k}_{\mathrm{s}}}\)

\({C}_{\mathrm{E}}\) :

Ergun coefficient, \({C}_{\mathrm{E}}=\frac{1.75}{\sqrt{150{\varepsilon }^{3}}}\)

\({c}_{\mathrm{p}}\) :

Specific heat at constant pressure (J kg−1 K−1)

\(\mathrm{Da}\) :

Darcy parameter, \(\mathrm{Da}=\frac{K\sqrt{\mathrm{Gr}}}{{a}^{2}}\)

\(D/d\) :

Ratio of cylinder diameter to spherical particle diameter

\(d\) :

Diameter of spherical particles (m)

\(f\) :

Non-dimensional stream function, \(f\left(\xi ,\eta \right)=\psi /\nu \xi \sqrt[4]{\mathrm{Gr}}\)

\(g\) :

Acceleration of gravity (m s−2)

\({h}_{\mathrm{sf}}\) :

Interphase convection heat transfer coefficient (W m−2 K−1)

\(K\) :

Permeability, \(K={\varepsilon }^{3}{d}^{2}/150{(1-\varepsilon )}^{2}\)

\({\text{Kr}}\) :

Conductivity ratio, \({\text{Kr}}=\frac{{k}_{\mathrm{s}}}{{k}_{\mathrm{f}}}\)

\(k\) :

Conduction heat transfer, W m−1 K−1

\(\mathrm{Nu}\) :

Nusselt

\(\overline{\mathrm{Nu} }\) :

Mean Nusselt

\(\mathrm{Pr}\) :

Prandtl number, \(\mathrm{Pr}=\frac{\rho \nu {c}_{\mathrm{p}}}{k}\)

\(\mathrm{Ra}\) :

Rayleigh number, \(\mathrm{Ra}=\frac{g\beta \rho \left({T}_{\mathrm{w}}-{T}_{\infty }\right){a}^{3}}{\nu {\alpha }_{\mathrm{f}}}\)

\(T\) :

Temperature (K)

\(u\) :

Velocity component in the \(x\), (m s−1)

\(v\) :

Velocity component in the \(y\), (m s−1)

\(x\) :

Stream-wise coordinate (m)

\(y\) :

Transverse coordinate (m)

\(\alpha \) :

Thermal diffusivity (m2 s−1)

\(\beta \) :

Constant of thermal expansion (K−1)

\(\nu \) :

Kinematic viscosity (m2 s−1)

\(\rho \) :

Fluid density (kg m−3)

\(\varepsilon \) :

Porosity

\(\Lambda \) :

Forchheimer parameter, \(\Lambda =\frac{{C}_{\mathrm{E}}a}{{K}^{1/2}}\)

\(\eta \) :

Dimensionless radial coordinate, \(\eta =y\sqrt[4]{\mathrm{Gr}}/a\)

\(\theta \) :

Non-dimensional temperature

\(\xi \) :

Dimensionless tangential coordinate, \(\xi =x/a\)

\(\psi \) :

Stream function

\(\mathrm{f}\), \(\mathrm{s}\) :

Related to fluid and solid

\(\mathrm{w}\) :

Conditions on the wall

References

  1. Kaviani M. Principles of heat transfer in porous media. Springer; 1991.

    Book  Google Scholar 

  2. Ingham DB, Pop I. Transport phenomena in porous media III. Elsevier; 2005.

    Google Scholar 

  3. Nield DA, Bejan A. Convection in porous media. 3rd ed. Newyork: Springer; 2006.

    Google Scholar 

  4. Hossain MA, Alim MA, Ress DAS. The effect of radiation on free convection from a porous vertical plate. Int J Heat Mass Transf. 1999;42:181–91. https://doi.org/10.1016/S0017-9310(98)00097-0.

    Article  CAS  Google Scholar 

  5. Merkin JH. Free convection boundary layers on Axi-Symmetric and two-dimensional bodies of arbitrary shape in a saturated porous medium. Int J Heat Mass Transf. 1979;22:1461–2.

    Article  Google Scholar 

  6. Kuznetsov AV, Nield DA. The Cheng–Minkowycz problem for natural convective boundary layer flow in a porous medium saturated by a nanofluid: a revised model. Int J Heat Mass Transf. 2013;65:682–5. https://doi.org/10.1016/j.ijheatmasstransfer.2013.06.054.

    Article  CAS  Google Scholar 

  7. Yan B, Pop I, Ingham DB. A numerical study of unsteady free convection from a sphere in a porous medium. Int J Heat Mass Transf. 1997;40(4):893–903. https://doi.org/10.1016/0017-9310(96)00157-3.

    Article  CAS  Google Scholar 

  8. Cheng C. Natural convection boundary layer flow over a truncated cone in a porous medium saturated by a nano fluid. Int Commun Heat Mass Transf. 2012;39(2):231–5. https://doi.org/10.1016/j.icheatmasstransfer.2011.11.002.

    Article  CAS  Google Scholar 

  9. Aly AM. ISPH method for MHD convective flow from grooves inside a nanofluid-filled cavity under the effects of Soret and Dufour numbers. Phys A Stat Mech Appl. 2020;546:124087. https://doi.org/10.1016/j.physa.2019.124087.

    Article  CAS  Google Scholar 

  10. Ghadi AZ, Asl AH, Valipour MS. Numerical modelling of double-diffusive natural convection within an arc-shaped enclosure filled with a porous medium. J Heat Mass Transf Res. 2014;1(2013):83–91.

    Google Scholar 

  11. Noghrehabadi A, Ghalambaz M, Izadpanahi E, Pourrajab R. Effect of magnetic field on the boundary layer flow, heat and mass transfer of nanofluids over a stretching cylinder. J Heat Mass Transf Res. 2014;1(2013):9–16.

    Google Scholar 

  12. Schumann TEW. Heat transfer: a liquid flowing porous prism. J Frankl Inst. 1929;208(3):405–16. https://doi.org/10.1016/S0016-0032(29)91186-8.

    Article  CAS  Google Scholar 

  13. Carbonell RG, Whitaker S. Heat and mass transfer in porous media. Fundam Transp Phenom Porous Media. 1984;82:121–98. https://doi.org/10.1007/978-94-009-6175-3_3.

    Article  Google Scholar 

  14. Quintard M, Whitaker S. Local thermal equilibrium for transient heat conduction: theory and comparison with numerical experiments. Int J Heat Mass Transf. 1995;38(15):2779–96. https://doi.org/10.1016/0017-9310(95)00028-8.

    Article  CAS  Google Scholar 

  15. Lee Y, Vafai K. Analytical characterization and conceptual assessment of solid and fuid temperature differentials in porous media. Int J Heat Mass Transf. 1999;42:423–35.

    Article  CAS  Google Scholar 

  16. Minkowycz WJ, Haji-sheikh A, Vafai K. On departure from local thermal equilibrium in porous media due to a rapidly changing heat source: the Sparrow number. Int J Heat Mass Transf. 1999;42:3373–85.

    Article  CAS  Google Scholar 

  17. Baytas AC, Pop I. Free convection in a square porous cavity using a thermal nonequilibrium model. Int J Therm Sci. 2002;41:861–70. https://doi.org/10.1016/S1290-0729(02)01379-0.

    Article  Google Scholar 

  18. Banu N, Rees DAS. Onset of Darcy–Benard convection using a thermal non-equilibrium model. Int J Heat Mass Transf. 2002;45:2221–8.

    Article  Google Scholar 

  19. Bayta C. Thermal non-equilibrium natural convection in a square enclosure filled with a heat-generating solid phase, non-Darcy porous medium. Int J Energy Res. 2003;27:975–88. https://doi.org/10.1002/er.929.

    Article  CAS  Google Scholar 

  20. Badruddin IA, Zainal ZA, Narayana PAA, Seetharamu KN. Thermal non-equilibrium modeling of heat transfer through vertical annulus embedded with porous medium. Int J Heat Mass Transf. 2006;49:4955–65. https://doi.org/10.1016/j.ijheatmasstransfer.2006.05.043.

    Article  CAS  Google Scholar 

  21. Phanikumar MS, Mahajan RL. Non-Darcy natural convection in high porosity metal foams. Int J Heat Mass Transf. 2002;45:3781–93.

    Article  CAS  Google Scholar 

  22. Haddad OM. Validation of the local thermal equilibrium assumption in natural convection from a vertical plate embedded in porous medium: non-Darcian model. Int J Heat Mass Transf. 2004;47:2037–42. https://doi.org/10.1016/j.ijheatmasstransfer.2003.09.033.

    Article  Google Scholar 

  23. Al-sumaily GF, Sheridan J, Thompson MC. Validation of thermal equilibrium assumption in forced convection steady and pulsatile flows over a cylinder embedded in a porous channel. Int Commun Heat Mass Transf. 2013;43:30–8. https://doi.org/10.1016/j.icheatmasstransfer.2013.01.009.

    Article  Google Scholar 

  24. Kumari M, Jayanthi S. Non-Darcy Non-Newtonian free convection flow over a horizontal cylinder in a saturated porous medium. Int Commun Heat Mass Transf. 2004;31(8):1219–26.

    Article  Google Scholar 

  25. Saeid NH. Analysis of free convection about a horizontal cylinder in a porous media using a thermal non-equilibrium model. Int Commun Heat Mass Transf. 2006;33:158–65. https://doi.org/10.1016/j.icheatmasstransfer.2005.09.009.

    Article  Google Scholar 

  26. EL-Kabeir SMM, EL-Hakiem MA, Rashad AM. Group method analysis of combined heat and mass transfer by MHD non-Darcy non-Newtonian natural convection adjacent to horizontal cylinder in a saturated porous medium. Appl Math Model. 2008;32:2378–95. https://doi.org/10.1016/j.apm.2007.09.013.

    Article  Google Scholar 

  27. Mukhopadhyay S. Natural convection flow on a sphere through porous medium in presence of heat sourse/sink near a stagnaton point. Math Model Anal. 2008;13(4):513–20. https://doi.org/10.3846/1392-6292.2008.13.513-520.

    Article  Google Scholar 

  28. Hassanien IA, Rashed ZZ. Non-Darcy free convection flow over a horizontal cylinder in a saturated porous medium with variable viscosity, thermal conductivity and mass diffusivity. Commun Nonlinear Sci Numer Simul. 2011;16:1931–41. https://doi.org/10.1016/j.cnsns.2010.08.030.

    Article  Google Scholar 

  29. Prasad VR, Vasu B, Beg OA, Parshad DR. Radiation effects on magnetohydrodynamic heat and mass transfer from a horizontal cylinder in a variable porosity regime. J Porous Media. 2012;15(3):261–81. https://doi.org/10.1615/JPorMedia.v15.i3.

    Article  Google Scholar 

  30. Rao AS, Prasad VR, Bég OA, Rashidi M. Free convection heat and mass transfer of a Nanofluid past a horizontal cylinder enbedded in a Non-Darcy porous medium. J Porous Media. 2018;21(3):279–94. https://doi.org/10.1615/JPorMedia.v21.i3.60.

    Article  Google Scholar 

  31. Dullien FAL. Fluid transport and pore structure. 2nd ed. New York: Academic Press INC; 1979.

    Google Scholar 

  32. Wakao N, Kaguei S. Heat and mass transfer in packed beds. Routledge; 1982.

    Google Scholar 

  33. Keller HB. Numerical methods in boundary-layer theory theory. Annu Rev Fluid Mech. 1978;10:417–33. https://doi.org/10.1146/annurev.fl.10.010178.002221.

    Article  Google Scholar 

  34. Gaffar SA, Prasad VR. Thermal radiation and heat generation / absorption effects on viscoelastic double-diffusive convection from an isothermal sphere in porous media. Ain Shams Eng J. 2015;6:1009–30. https://doi.org/10.1016/j.asej.2015.02.014.

    Article  Google Scholar 

  35. Molla M, Paul SC, Hossain A. Natural convection flow from a horizontal circular cylinder with uniform heat flux in presence of heat generation. Appl Math Model. 2009;33:3226–36. https://doi.org/10.1016/j.apm.2008.10.039.

    Article  Google Scholar 

  36. Hussain Z, Hayat T, Alsaedi A, Ahmed B, Forhheimer D. Darcy Forhheimer aspects for CNTs nanofluid past a stretching cylinder; using Keller box method. Results Phys. 2018;11:801–16. https://doi.org/10.1016/j.rinp.2018.09.029.

    Article  Google Scholar 

  37. Rathish Kumar BV, Krishna Murthy SVSSNVG. Double diffusive free convection induced by verticalwavy surface in a doubly stratified Darcy porous medium under the influence of Soret and Dufour effect. J Porous Media. 2012;15(9):877–90. https://doi.org/10.1615/JPorMedia.v15.i9.60.

    Article  Google Scholar 

  38. Uddin MJ, Bég OA, Bég T. Stefan blowing, navier slip, and radiation effects on thermo-solutal convection from a spinning cone in an anisotropic porousmedium. J Porous Media. 2016;19(7):617–33. https://doi.org/10.1615/JPorMedia.v19.i7.40.

    Article  Google Scholar 

  39. Srinivasacharya D, Surender O. Non-darcy mixed convection induced by a vertical plate in a doubly stratified porous medium. J Porous Media. 2014;17(3):197–209. https://doi.org/10.1615/JPorMedia.v17.i3.20.

    Article  Google Scholar 

  40. Kudenatti RB, Shashi Prabha Gogate S. Modelling the fluid flow and mass transfer through porous media with effective viscosity on the three-dimensional boundary layer. J Porous Media. 2018;21(11):1069–84. https://doi.org/10.1615/JPorMedia.2018021347.

    Article  Google Scholar 

  41. Prasad VR, Reddy NB, Rao AS, Anwar OB, Reddy NB. Modelling laminar transport phenomena in a Casson rheological fluid from an isothermal sphere with partial slip in a non-Darcy porous medium. Theor Appl Mech. 2013;40(4):469–510. https://doi.org/10.2298/TAM1304469P.

    Article  Google Scholar 

  42. Yih KA. Effect of uniform blowing/suction on MHD-natural convection over a horizontal cylinder: UWT or UHF. Acta Mech. 2000;144(1–2):17–27. https://doi.org/10.1007/BF01181825.

    Article  Google Scholar 

  43. Merkin JH. The effects of blowing and suction on free convection boundary layers. Int Heat mass Transf. 1975;18:237–44.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Habib-ollah Sayehvand.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Some mathematical operations used in deriving equations

$$ \begin{aligned} & u = \frac{\partial \left( \psi \right)}{{\partial y}},\quad \psi = \nu \xi \sqrt[4]{{\text{Gr}}} f,\quad \xi = \frac{x}{a} ,\quad \eta = \frac{y}{a}\sqrt[4]{{\text{Gr}}} \\ & \frac{\partial \psi }{{\partial y}} = \frac{\partial \psi }{{\partial \eta }} \cdot \frac{\partial \eta }{{\partial y}} + \frac{\partial \psi }{{\partial \xi }} \cdot \frac{\partial \xi }{{\partial y}} = \frac{\partial f}{{\partial \eta }}\nu \xi \sqrt[4]{{\text{Gr}}} . \cdot \frac{{\sqrt[4]{{\text{Gr}}}}}{a} \\ & \frac{\partial \left( \psi \right)}{{\partial y}} = \frac{1}{a} \nu \xi \sqrt {{\text{Gr}}} \frac{\partial f}{{\partial \eta }} \\ & u = \nu \xi \sqrt {{\text{Gr}}} \frac{\partial f}{{\partial \eta }} \\ \end{aligned} $$
(13)
$$ \begin{aligned} & u = \frac{1}{a} \nu \xi \sqrt {{\text{Gr}}} f^{\prime} \\ & v = - \frac{\partial \left( \psi \right)}{{\partial x}} \\ & \frac{\partial \psi }{{\partial x}} = \frac{\partial \psi }{{\partial \xi }} \cdot \frac{\partial \xi }{{\partial x}} + \frac{\partial \psi }{{\partial \eta }} \cdot \frac{\partial \eta }{{\partial x}} = \frac{\partial \psi }{{\partial \xi }} \cdot \frac{1}{a} \\ & \frac{\partial \psi }{{\partial \xi }} = \left( {\frac{\partial f}{{\partial \xi }}\nu \xi \sqrt[4]{{\text{Gr}}} + f\nu \sqrt[4]{{\text{Gr}}}} \right)\frac{1}{a} \\ & \Rightarrow \frac{\partial \psi }{{\partial x}} = \frac{1}{a}\left( {\nu \xi \sqrt[4]{{\text{Gr}}}\frac{\partial f}{{\partial \xi }} + \nu \sqrt[4]{{\text{Gr}}}f} \right) \\ & v = - \frac{1}{a}\nu \sqrt[4]{{\text{Gr}}}\left( {\xi \frac{\partial f}{{\partial \xi }} + f} \right) \\ \end{aligned} $$
(14)
$$ \begin{aligned} & \frac{\partial u}{{\partial x}} = \frac{\partial u}{{\partial f}} \cdot \frac{\partial f}{{\partial x}} \\ & \frac{\partial u}{{\partial f}} = \frac{\partial }{\partial f}\left( {\frac{\partial f}{{\partial \eta }} \cdot \frac{1}{a}\sqrt {{\text{Gr}}} v\xi } \right) = \frac{1}{a}\sqrt {{\text{Gr}}} v\xi \frac{\partial }{\partial \eta } \\ & \frac{\partial f}{{\partial x}} = \frac{\partial f}{{\partial \xi }} \cdot \frac{\partial \xi }{{\partial x}} = \frac{\partial f}{{\partial \xi }} \cdot \frac{1}{a} \\ & \frac{\partial u}{{\partial x}} = \frac{1}{a}\sqrt {{\text{Gr}}} v\xi \frac{\partial }{\partial \eta }\frac{\partial f}{{\partial \xi }} \cdot \frac{1}{a} \\ & \frac{\partial u}{{\partial x}} = \frac{1}{{a^{2} }}\sqrt {{\text{Gr}}} v\xi \frac{{\partial f^{\prime}}}{\partial \xi } \\ \end{aligned} $$
(15)
$$ \begin{aligned} & \frac{\partial u}{{\partial y}} = \frac{\partial u}{{\partial f}} \cdot \frac{\partial f}{{\partial y}} \\ & \frac{\partial u}{{\partial f}} = \frac{1}{a}\sqrt {{\text{Gr}}} v\xi \frac{\partial f}{{\partial \eta }} \\ & \frac{\partial f}{{\partial y}} = \frac{\partial f}{{\partial \eta }} \cdot \frac{\partial \eta }{{\partial y}} = f^{\prime}\frac{{\sqrt[4]{{\text{Gr}}}}}{a} \\ & \frac{\partial u}{{\partial y}} = \frac{1}{a}\sqrt {{\text{Gr}}} v\xi \frac{{\partial f^{\prime}}}{\partial \eta }\frac{{\sqrt[4]{{\text{Gr}}}}}{a} \\ & \frac{\partial u}{{\partial y}} = \frac{1}{{a^{2} }}\sqrt {{\text{Gr}}} \sqrt[4]{{\text{Gr}}} v\xi f^{\prime\prime} \\ & \frac{{\partial^{2} u}}{{\partial y^{2} }} = \frac{\partial }{\partial y}\left( {\frac{\partial u}{{\partial y}}} \right) = \frac{\partial }{\partial y}\left( {\frac{1}{{a^{2} }}\sqrt {{\text{Gr}}} \sqrt[4]{{\text{Gr}}} v\xi f^{\prime\prime}} \right) \\ & \frac{{\partial^{2} u}}{{\partial y^{2} }} = \frac{{\text{Gr}}}{{a^{3} }}v\xi f^{\prime\prime\prime} \\ \end{aligned} $$
(16)
$$ \begin{aligned} & \theta \left( {\xi ,\eta } \right) = \frac{{T - T_{\infty } }}{{T_{w} - T_{\infty } }} \Rightarrow T = \theta \left( {T_{w} - T_{\infty } } \right) + T_{\infty } \\ & \frac{\partial T}{{\partial x}} = \frac{\partial T}{{\partial \theta }} \cdot \frac{\partial \theta }{{\partial x}} = \frac{\partial \theta }{{\partial x}}\left( {T_{w} - T_{\infty } } \right) \\ & \frac{\partial \theta }{{\partial x}} = \frac{\partial \theta }{{\partial \xi }} \cdot \frac{\partial \xi }{{\partial x}} = \frac{\partial \theta }{{\partial \xi }} \cdot \frac{1}{a} \\ & \frac{\partial T}{{\partial x}} = \frac{{\left( {T_{w} - T_{\infty } } \right)}}{a}\frac{\partial \theta }{{\partial \xi }} \\ \end{aligned} $$
(17)
$$ \begin{aligned} & \frac{\partial T}{{\partial y}} = \frac{\partial T}{{\partial \theta }} \cdot \frac{\partial \theta }{{\partial y}} = \left( {T_{w} - T_{\infty } } \right)\frac{\partial \theta }{{\partial y}} \\ & \frac{\partial \theta }{{\partial y}} = \frac{\partial \theta }{{\partial \eta }} \cdot \frac{\partial \eta }{{\partial y}} = \frac{{\sqrt[4]{{\text{Gr}}}}}{a} \cdot \frac{\partial \theta }{{\partial \eta }} \\ & \frac{\partial T}{{\partial y}} = \frac{{\left( {T_{w} - T_{\infty } } \right)\sqrt[4]{{\text{Gr}}}}}{a} \frac{\partial \theta }{{\partial \eta }} \\ & \frac{{\partial^{2} T}}{{\partial y^{2} }} = \frac{\partial }{\partial y}\left( {\frac{\partial T}{{\partial y}}} \right) = \frac{\partial }{\partial y}\left( {\frac{{\left( {T_{w} - T_{\infty } } \right)\sqrt[4]{{\text{Gr}}}}}{a} \frac{\partial \theta }{{\partial \eta }}} \right) \\ & \frac{{\partial^{2} T}}{{\partial y^{2} }} = \frac{{\left( {T_{w} - T_{\infty } } \right)\sqrt {{\text{Gr}}} }}{{a^{2} }} \frac{{\partial^{2} \theta }}{{\partial \eta^{2} }} \\ \end{aligned} $$
(18)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Keshavarzian, B., Sayehvand, Ho. The effect of the flow and solid matrix parameters on the Nusselt number for free convection over horizontal cylinder by considering the boundary layer and local thermal non-equilibrium model. J Therm Anal Calorim 148, 8087–8096 (2023). https://doi.org/10.1007/s10973-022-11801-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-022-11801-x

Keywords

Navigation