Skip to main content
Log in

Experimental and numerical study on heat transfer characteristic of nitrate molten salt-based nanofluids in tube with twisted tape

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Nitrate molten salts are extensively applied in Concentrating Solar Power plant as high-temperature thermal energy storage and heat transfer medium. At present, the study on molten salt-based nanofluids (MSBNFs) mainly focuses on the physical properties, such as thermal conductivity, specific heat, viscosity. There is rare research on forced convection heat transfer performance of MSBNFs. In this study, the heat transfer characteristic of low melting point quaternary MSBNFs in circular tube with/without different twisted tapes are investigated. The results show the Nu number increases with the decreasing of twisted tape twisted ratio. Compared with the smooth tube, the average Nu numbers of MSBNFs in tube inserted with twisted tape Y1, Y2, Y3 increase 14.93%, 20.67%, 25.49%, respectively. The secondary flow contours by inserting twisted tape in tube increases with the decreasing of twisted ratio and reduce the temperature boundary layer. The temperature distribution in tube with twisted tape is more uniform compared with that in smooth tube. The heat transfer correlation of low melting point MSBNFs in tube inserted with different twisted tapes is fitted. The heat transfer performance of low melting point MSBNFs is compared with different convection heat transfer empirical correlations in this work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig.3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Malik MZ, Musharavati F, Ahmed FW, et al. Mathematical modeling of melting point and viscosity of a new molten salt for concentrating solar plant. J Therm Anal Calorim. 2022;147(7):4533–40. https://doi.org/10.1007/s10973-021-10783-6.

    Article  CAS  Google Scholar 

  2. Vaka M, Walvekar R, Khalid M, et al. Low-melting-temperature binary molten nitrate salt mixtures for solar energy storage. J Therm Anal Calorim. 2020;141(6):2657–64. https://doi.org/10.1007/s10973-020-09683-y.

    Article  CAS  Google Scholar 

  3. Mahroug I, Doppiu S, Dauvergne JL, et al. Extended investigation of LiOH–LiBr binary system for high-temperature thermal energy storage applications. J Therm Anal Calorim. 2022;147(22):12455–65. https://doi.org/10.1007/s10973-022-11468-4.

    Article  CAS  Google Scholar 

  4. Aguilar T, Carrillo I, Martínez P, et al. Improving stability and thermal properties of TiO2-based nanofluids for concentrating solar energy using two methods of preparation. J Therm Anal Calorim. 2021;144(3):895–905. https://doi.org/10.1007/s10973-020-09615-w.

    Article  CAS  Google Scholar 

  5. Zhang CC, Han ST, Wu YT, Zhang CY, Guo H. Investigation on convection heat transfer performance of quaternary mixed molten salt based nanofluids in smooth tube. Int J Therm Sci. 2022;177: 107534. https://doi.org/10.1016/j.ijthermalsci.2022.107534.

    Article  CAS  Google Scholar 

  6. Shin D, Banerjee D. Enhanced thermal properties of SiO2 nanocomposite for solar thermal energy storage applications. Int J Heat Mass Transf. 2015;84:898–902. https://doi.org/10.1016/j.ijheatmasstransfer.2015.01.100.

    Article  CAS  Google Scholar 

  7. Zhang CC, Han Y, Wu YT. Comparative study on high temperature thermal stability of quaternary nitrate-nitrite mixed salt and solar salt. Sol Energy Mater Sol Cells. 2021;230: 111197. https://doi.org/10.1016/j.solmat.2021.111197.

    Article  CAS  Google Scholar 

  8. Chieruzzi M, Cerritelli GF, Miliozzi A, et al. Effect of nanoparticles on heat capacity of nanofluids based on molten salts as PCM for thermal energy storage. Nanoscale Res Lett. 2013;8(1):448. https://doi.org/10.1186/1556-276X-8-448.

    Article  CAS  Google Scholar 

  9. Song WL, Lu YW, Wu YT, et al. Effect of SiO2 nanoparticles on specific heat capacity of low-melting-point eutectic quaternary nitrate salt. Sol Energy Mater Sol Cells. 2018;179:66–71. https://doi.org/10.1016/j.solmat.2018.01.014.

    Article  CAS  Google Scholar 

  10. Han Y, Zhang CC, Wu YT. Investigation on thermal performance of quaternary nitrate-nitrite mixed salt and solar salt under thermal shock condition. Renew Energy. 2021;175:1041–51. https://doi.org/10.1016/j.renene.2021.05.002.

    Article  CAS  Google Scholar 

  11. Wu YT, Li Y, Ren N. Improving the thermal properties of NaNO3-KNO3 for concentrating solar power by adding additives. Sol Energy Mater Sol Cells. 2017;160:263–8. https://doi.org/10.1016/j.solmat.2016.10.013.

    Article  CAS  Google Scholar 

  12. Garg MO, Nautiyal H, Khurana S, Shukla MK. Heat transfer augmentation using twisted tape inserts: a review. Renew Sust Energ Rev. 2016;63:193–225. https://doi.org/10.1016/j.rser.2016.04.051.

    Article  Google Scholar 

  13. Bahiraei M, Mazaheri N, Aliee F, Safaei MR. Thermo-hydraulic performance of a biological nanofluid containing graphene nanoplatelets within a tube enhanced with rotating twisted tape. Powder Technol. 2019;355:278–88. https://doi.org/10.1016/j.powtec.2019.07.053.

    Article  CAS  Google Scholar 

  14. Sharma KV, Sundar LS, Sarma PK. Estimation of heat transfer coefficient and friction factor in the transition flow with low volume concentration of Al2O3 nanofluid flowing in a circular tube and with twisted tape insert. Int Commun Heat Mass Transf. 2009;36:503–7. https://doi.org/10.1016/j.icheatmasstransfer.2009.02.011.

    Article  CAS  Google Scholar 

  15. Wongcharee K, Eiamsa-Ard S. Enhancement of heat transfer using CuO/water nanofluid and twisted tape with alternate axis. Int Commun Heat Mass Transf. 2011;38:742–8. https://doi.org/10.1016/j.icheatmasstransfer.2011.03.011.

    Article  CAS  Google Scholar 

  16. Maddah H, Alizadeh M, Ghasemi N, Alwi SRW. Experimental study of Al2O3/water nanofluid turbulent heat transfer enhancement in the horizontal double pipes fitted with modified twisted tapes. Int J Heat Mass Transf. 2014;78:1042–54. https://doi.org/10.1016/j.ijheatmasstransfer.2014.07.059.

    Article  CAS  Google Scholar 

  17. Sundar LS, Sharma KV. Turbulent heat transfer and friction factor of Al2O3 nanofluid in circular tube with twisted tape inserts. Int J Heat Mass Transf. 2010;53:1409–16. https://doi.org/10.1016/j.ijheatmasstransfer.2009.12.016.

    Article  CAS  Google Scholar 

  18. Jafaryar M, Sheikholeslami M, Li Z, Moradi R. Nanofluid turbulent flow in a pipe under the effect of twisted tape with alternate axis. J Therm Anal Calorim. 2019;135:305–23. https://doi.org/10.1007/s10973-018-7093-2.

    Article  CAS  Google Scholar 

  19. Sundar LS, Kumar NTR, Naik MT, Sharma KV. Effect of full length twisted tape inserts on heat transfer and friction factor enhancement with Fe3O4 magnetic nanofluid inside a plain tube: an experimental study. Int J Heat Mass Transf. 2012;55:2761–8. https://doi.org/10.1016/j.ijheatmasstransfer.2012.02.040.

    Article  CAS  Google Scholar 

  20. Eiamsa-ard S, Kiatkittipong K. Heat transfer enhancement by multiple twisted tape inserts and TiO2/water nanofluid. Appl Therm Eng. 2014;70:896–924. https://doi.org/10.1016/j.applthermaleng.2014.05.062.

    Article  CAS  Google Scholar 

  21. Azmi WH, Sharma KV, Sarma PK, Mamat R. Numerical validation of experimental heat transfer coefficient with SiO2 nanofluid flowing in a tube with twisted tape inserts. Appl Therm Eng. 2014;73:296–306. https://doi.org/10.1016/j.applthermaleng.2014.07.060.

    Article  CAS  Google Scholar 

  22. Azmi WH, Sharma KV, Sarma PK, Mamat R, Anuar S. Comparison of convective heat transfer coefficient and friction factor of TiO2 nanofluid flow in a tube with twisted tape inserts. Int J Therm Sci. 2014;81:84–93. https://doi.org/10.1016/j.ijthermalsci.2014.03.002.

    Article  CAS  Google Scholar 

  23. Aghayari R, Maddah H, Pourkiaei SM, Ahmadi MH, Chen LG, Ghazvini M. Theoretical and experimental studies of heat transfer in a double-pipe heat exchanger equipped with twisted tape and nanofluid. Eur Phys J Plus. 2020;135:1–26. https://doi.org/10.1140/epjp/s13360-020-00252-8.

    Article  Google Scholar 

  24. Bernardo E, Eian CS. Heat-transfer tests of aqueous ethylene glycol solutions in an electrically heated tube. Washington: NACA; 1945.

    Google Scholar 

  25. Jianfeng L, Xiangyang S, Jing D, Peng Q, Wen Y. Convective heat transfer of high temperature molten salt in transversely grooved tube. Appl Therm Eng. 2013;61:157–62. https://doi.org/10.1016/j.applthermaleng.2013.07.037.

    Article  Google Scholar 

  26. Chen H, Chen X, Wu YT, Lu YW, Wang X. Experimental study on forced convection heat transfer of KNO3–Ca(NO3)2+SiO2 molten salt nanofluids in circular tube. Sol Energy. 2020;206:900–6. https://doi.org/10.1016/j.solener.2020.06.061.

    Article  CAS  Google Scholar 

  27. Liu B, Wu YT, Ma CF, Ye M, Guo H. Turbulent convective heat transfer with molten salt in a circular pipe. Int Commun Heat Mass Transf. 2009;36:912–6. https://doi.org/10.1016/j.icheatmasstransfer.2009.06.003.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by National Key Research and Development Program of China (2022YFB2405203), National Natural Science Foundation of China (NSFC) (51906003), Inner Mongolia Science and Technology Major Project (No. 2021SZD0036).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuting Wu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, C., Han, S., Wu, Y. et al. Experimental and numerical study on heat transfer characteristic of nitrate molten salt-based nanofluids in tube with twisted tape. J Therm Anal Calorim 148, 955–964 (2023). https://doi.org/10.1007/s10973-022-11800-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-022-11800-y

Keywords

Navigation