Skip to main content
Log in

Studies on synthesis, structural and thermal properties of sodium niobium phosphate glasses for nuclear waste immobilization applications

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The structural and thermal properties of sodium niobium phosphate glass are studied to analyse its suitability for immobilizing long-lived radioactive waste from nuclear reprocessing plants. Two series of sodium niobium phosphate glasses such as (A) xNb2O5–(50−x)Na2O–50P2O5 and (B) xNb2O5–(50−x/2)Na2O–(50−x/2) P2O5 (x = 0, 10, 20, 30, 40 mol.%) are prepared by the conventional melt–quenching technique. The influence of the incremental addition of Nb2O5 on the structural and thermal properties of the above two series is investigated. The FTIR and Raman spectra of these glasses revealed that the number of [NbO6] octahedral chain increases with Nb content and dominates as the major structural unit over the number of PO4 tetrahedra unit. The glass transition temperature (Tg), crystallization temperature (Tc) and melting temperature (Tm) are measured by using a differential scanning calorimeter (DSC). Other thermal stability parameters such as Hruby (KH), Angell (KA), Saad–Poulain (KSP) and Weinberg (KW), the total relaxation time of transformation and fragility are evaluated and compared between different composition of glasses. For both series A and B, the glass transition temperature increases with Nb content, suggesting the formation of a larger number of P–O–Nb or Nb–O–Nb linkages compared to the PO4 tetrahedra, resulting in a more rigid network. This is confirmed by Raman spectra which show an increase in the number of Nb–O–Nb bonds with Nb content. The major crystalline phases formed by devitrifying these glasses are identified by XRD and are found to be mainly NaPO3, NbOPO4, Na2Nb6P4O26 and Na4Nb8P4O32.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Costa-Silva D, Silva A, Mello-Castanho S, Rambo C, (2019) Niobium modified glass for nuclear waste immobilization. In: Proceedings of the INAC 2019: international nuclear Atlantic conference. Nuclear new horizons: fueling our future

  2. DeWees R, Wang H. Synthesis and properties of NaSICON-type LATP and LAGP solid electrolytes. Chemsuschem. 2019;12(16):3713–25.

    Article  CAS  Google Scholar 

  3. Kuwik M, Pisarska J, Pisarski WA. Influence of oxide glass modifiers on the structural and spectroscopic properties of phosphate glasses for visible and near-infrared photonic applications. Materials. 2020;13(21):4746.

    Article  CAS  Google Scholar 

  4. Christie JK, Ainsworth RI, Di Tommaso D, de Leeuw NH. Nanoscale chains control the solubility of phosphate glasses for biomedical applications. J Phys Chem B. 2013;117(36):10652–7.

    Article  CAS  Google Scholar 

  5. Basavapoornima C, Kesavulu C, Maheswari T, Pecharapa W, Depuru SR, Jayasankar C. Spectral characteristics of Pr3+-doped lead based phosphate glasses for optical display device applications. J Lumin. 2020;228: 117585.

    Article  CAS  Google Scholar 

  6. Ahmed I, Lewis M, Olsen I, Knowles J. Phosphate glasses for tissue engineering: Part 1. Processing and characterisation of a ternary-based P2O5–CaO–Na2O glass system. Biomaterials. 2004;25(3):491–9.

    Article  CAS  Google Scholar 

  7. Sene F, Martinelli J, Gomes L. Synthesis and characterization of niobium phosphate glasses containing barium and potassium. J Non-Cryst Solids. 2004;348:30–7.

    Article  CAS  Google Scholar 

  8. Khor S, Talib Z, Yunus WM. Optical properties of ternary zinc magnesium phosphate glasses. Ceram Int. 2012;38(2):935–40.

    Article  CAS  Google Scholar 

  9. Zhou Y, Zheng H, Zhao S, Zhang C, Bai W, Sun C, et al. Preparation, structural and mechanical characterization of ceria-added phosphate glasses. J Non-Cryst Solids. 2021;570: 120878.

    Article  CAS  Google Scholar 

  10. Ali A, Singh S, Pyare R. SrO assisted 1393 glass scaffold with enhanced biological compatibility. J Non-Cryst Solids. 2020;550: 120392.

    Article  CAS  Google Scholar 

  11. Donato M, Gagliardi M, Sirleto L, Messina G, Lipovskii A, Tagantsev D, et al. Raman optical amplification properties of sodium–niobium–phosphate glasses. Appl Phys Lett. 2010;97(23): 231111.

    Article  Google Scholar 

  12. Sirleto L, Donato M, Messina G, Santangelo S, Lipovskii A, Tagantsev D, et al. Raman gain in niobium-phosphate glasses. Appl Phys Lett. 2009;94(3): 031105.

    Article  Google Scholar 

  13. Hardcastle FD, Wachs IE. Determination of niobium-oxygen bond distances and bond orders by Raman spectroscopy. Solid State Ionics. 1991;45(3–4):201–13.

    Article  CAS  Google Scholar 

  14. Chu C, Wu J, Yung S, Chin T, Zhang T, Wu F. Optical and structural properties of Sr–Nb–phosphate glasses. J Non-Cryst Solids. 2011;357(3):939–45.

    Article  CAS  Google Scholar 

  15. Lee Y-M, Hsu S, Yung S, Zhang T, Huang Y, Wu J, et al. Structural characterizations and optical properties of new Li–Sr–Nb-phosphate glasses. Mater Chem Phys. 2014;144(3):235–41.

    Article  CAS  Google Scholar 

  16. Ravangave L, Devde G. Structure and physical properties of 59B2O3–10Na2O–(30–x) CdO–xZnO–1CuO (0≤ x≤ 30) glass system. Adv Glass Sci Technol. 2018;1:21–38.

    Google Scholar 

  17. Upender G, Prasad M. Raman, FTIR, thermal and optical properties of TeO2-Nb2O5-B2O3-V2O5 quaternary glass system. J Taibah Univ Sci. 2017;11(4):583–92.

    Article  Google Scholar 

  18. Stoch P, Ciecinska M, Stoch A. Thermal properties of phosphate glasses for salt waste immobilization. J Therm Anal Calorim. 2014;117(1):197–204.

    Article  CAS  Google Scholar 

  19. Hrubý A. Evaluation of glass-forming tendency by means of DTA. Czechoslovak J Phys B. 1972;22(11):1187–93.

    Article  Google Scholar 

  20. Nascimento ML, Souza LA, Ferreira EB, Zanotto ED. Can glass stability parameters infer glass forming ability? J Non-Cryst Solids. 2005;351(40–42):3296–308.

    Article  CAS  Google Scholar 

  21. Rathore K, Saxena N. Kinetics of glass transition and thermal stability of Se 58 Ge 42–x Pb x (9≤ x≤ 20) glasses. Appl Phys A. 2010;98(2):441–8.

    Article  Google Scholar 

  22. Zhang G, Friot B, Poulain M. New gallium and indium based fluoride glasses. J Non-Cryst Solids. 1997;213:6–10.

    Article  Google Scholar 

  23. Weinberg M. Assessment of glass stability criteria. Phys Chem Glasses. 1994;35(3):119–23.

    CAS  Google Scholar 

  24. Guo J, Zu F-Q, Chen Z-H, Li X-F, Xi Y, Shen R-R, et al. Attempt to depict glass forming ability of bulk metallic glasses using the criterion of the total relaxation time at the glass transition. J Non-Cryst Solids. 2006;352(36–37):3859–63.

    Article  CAS  Google Scholar 

  25. Soliman A, Kashif I. Copper oxide content dependence of crystallization behavior, glass forming ability, glass stability and fragility of lithium borate glasses. Physica B. 2010;405(1):247–53.

    Article  CAS  Google Scholar 

  26. Kodama M, Kojima S. Anharmonicity and fragility in lithium borate glasses. J Therm Anal Calorim. 2002;69(3):961–70.

    Article  CAS  Google Scholar 

  27. Hudgens JJ, Brow RK, Tallant DR, Martin SW. Raman spectroscopy study of the structure of lithium and sodium ultraphosphate glasses. J Non-Cryst Solids. 1998;223(1–2):21–31.

    Article  CAS  Google Scholar 

  28. Benyounoussy S, Bih L, Muñoz F, Rubio-Marcos F, Naji M, El Bouari A. Structure, dielectric, and energy storage behaviors of the lossy glass-ceramics obtained from Na2O-Nb2O5-P2O5 glassy-system. Phase Transitions. 2021;94(9):634–50.

    Article  CAS  Google Scholar 

  29. Brow RK, Tallant DR, Myers ST, Phifer CC. The short-range structure of zinc polyphosphate glass. J Non-Cryst Solids. 1995;191(1–2):45–55.

    Article  CAS  Google Scholar 

  30. Hsu S, Wu J, Yung S, Chin T, Zhang T, Lee Y, et al. Evaluation of chemical durability, thermal properties and structure characteristics of Nb–Sr-phosphate glasses by Raman and NMR spectroscopy. J Non-Cryst Solids. 2012;358(1):14–9.

    Article  CAS  Google Scholar 

  31. Griebenow K, Bragatto CB, Kamitsos EI, Wondraczek L. Mixed-modifier effect in alkaline earth metaphosphate glasses. J Non-Cryst Solids. 2018;481:447–56.

    Article  CAS  Google Scholar 

  32. Brow RK. Review: the structure of simple phosphate glasses. J Non-Crystal Solids. 2000;263:1–28.

    Article  Google Scholar 

  33. Flambard A, Videau J-J, Delevoye L, Cardinal T, Labrugère C, Rivero C, et al. Structure and nonlinear optical properties of sodium–niobium phosphate glasses. J Non-Cryst Solids. 2008;354(30):3540–7.

    Article  CAS  Google Scholar 

  34. Benyounoussy S, Bih L, Muñoz F, Rubio-Marcos F, Bouari AE. Effect of the Na2O–Nb2O5–P2O5 glass additive on the structure, dielectric and energy storage performances of sodium niobate ceramics. Heliyon. 2021;7(5): e07113.

    Article  CAS  Google Scholar 

  35. De Araujo E, De Paiva J, Freitas J Jr, Sombra A. Raman and infrared spectroscopy studies of LiNbO3 in niobate glass-ceramics. J Phys Chem Solids. 1998;59(5):689–94.

    Article  Google Scholar 

  36. Costentin G, Borel MM, Grandin A, Leclaire A, Raveau B. Phosphate niobium bronzes and bronzoids with the MPTBp structure: Na4Nb8P4O32 and Na4− xAxNb7MP4O32 fourth members of the series Ax (PO2)4 (NbO3) 2m. Mater Res Bull. 1991;26(10):1051–7.

    Article  CAS  Google Scholar 

  37. Stunda A, Mironova-Ulmane N, Borodajenko N, Berzina-Cimdina L. Phase transition in niobophosphate glass-ceramic. Adv Mater Res. 2011;222:259–62.

    Article  CAS  Google Scholar 

  38. Bih L, Azrour M, Manoun B, Graça M, Valente M. Raman spectroscopy, x-ray, SEM, and DTA analysis of alkali-phosphate glasses containing and Nb2O5. J Spectroscopy. 2013.

  39. Ol’shin P, Povolotskii A, Man’shina A, Markov V, Sokolov I. Optic properties of niobium-phosphate glasses containing lithium, sodium, and potassium oxides. Glass Phys Chem. 2017;43(4):294–7.

    Article  Google Scholar 

  40. Sirleto L, Donato MG, Messina G, Santangelo S, Lipovskii AA, Tagantsev DK, et al. (eds). Enhanced Raman gain coefficients and bandwidths of sodium-niobium-phosphate glasses for Raman gain media. In: CLEO/Europe - EQEC 2009 - European conference on lasers and electro-optics and the European quantum electronics conference, 14–19 June; 2009.

  41. Holubová J, Černošek Z, Hejda P. The influence of niobium on the structure of Nb2O5–ZnO–P2O5 glasses. J Non Cryst Solids. 2018;502:35–43. https://doi.org/10.1016/j.jnoncrysol.2018.10.020.

    Article  CAS  Google Scholar 

  42. Zhang L, Brow RK. A Raman study of iron–phosphate crystalline compounds and glasses. J Am Ceram Soc. 2011;94(9):3123–30.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Dr. N. Sivaraman, Director, MC&MFCG, and Dr. V. Jayaraman, Associate Director, FMCG, IGCAR, for their support and encouragement. Dr. Kitheri Joseph, AD, MFRG, is thankfully acknowledged for support and encouragement. The authors are very much thankful to Mr. Dasarath Maji/AFSS for providing facility for recording thermogram of the samples and Mr. Swaroop Chandra for recording the FTIR. The authors are very much thankful to Dr. Pradyumna Kumar Parida, MMG, IGCAR, for analysing the samples by EDS.

Author information

Authors and Affiliations

Authors

Contributions

AS was responsible for sample preparation, experimental work, conceptualization, interpretation of results, formal analysis and writing the original draft. SKB was involved in experimental work, data collection and interpretation. RVK and HJ took part in discussion, reviewing and editing. SC participated in Raman data collection and interpretation.

Corresponding authors

Correspondence to R. Venkata Krishnan or Hrudananda Jena.

Ethics declarations

Conflict of interest

The authors hereby declare that the work reported in this article is original and has not been published elsewhere. There is no conflict of interest on this reported work among the authors or with any other body.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Senapati, A., Barik, S.K., Venkata Krishnan, R. et al. Studies on synthesis, structural and thermal properties of sodium niobium phosphate glasses for nuclear waste immobilization applications. J Therm Anal Calorim 148, 355–369 (2023). https://doi.org/10.1007/s10973-022-11760-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-022-11760-3

Keywords

Navigation