Skip to main content
Log in

Effect of finite size of ions on entropy generation characteristics for electroosmotic flow through microchannel considering interfacial slip

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

A theoretical model for entropy generation for an electroosmotic flow through a rectangular microchannel considering the finite size of ions and interfacial slip has been developed in this work to offer physical insights into the contributors of entropy generation. We use the Navier-slip model to represent interfacial slip and the modified Poisson–Boltzmann equation to describe the finite size of ions on the electric double-layer potential distribution without Debye–Huckel linearization. The modified Poisson–Boltzmann and the conservation of mass, momentum, and energy equations have been numerically solved using a finite element method-based solver. The numerical model is extensively validated with the reported experimental and numerical works. Results are presented for different viscous dissipation, Joule heating, Debye parameter, thermal Peclet number values, steric factor, and slip coefficient. It reveals that the effect of the finite size of ions on entropy generation with the consideration of interfacial slip strongly depends on the strength of the viscous and Joule heating. The average total entropy generation decreases with the slip coefficient, while it increases with the steric factor for lower values of thermal Peclet number (Pe). In contrast, the effect is opposite at higher values of Pe. For Pe = 0.1, the decrements in average total entropy generation are found as 45.25%, 38.42%, 34.89%, and 32.45%, respectively, for the steric factor of 0, 0.1, 0.2, and 0.3 with a slip coefficient of 0.1 as compared to without slip and point ion charge. For Pe = 2, the corresponding increments in average total entropy generation are found as 39.72%, 27.26%, 22.55%, and 19.69%, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

Be:

Bejan number

Br:

Brinkman number

c p :

Specific heat (J kg1 K1)

e :

Electron charge (C)

\({\vec{\mathbf{E}}}\) :

External electric field (V m−1)

\({\vec{\text{F}}}_{{\text{b}}}\) :

Dimensionless body force

G :

Joule heating parameter

H :

Half channel height (m)

k :

Thermal conductivity (Wm−1 K1)

k B :

Boltzmann constant

L :

Channel length (m)

n 0 :

Bulk-ion concentration (1 m−3)

N″:

Normalized local entropy generation

N :

Normalized average entropy generation

\(\overline{{{\text{Nu}}}}\) :

Average Nusselt number

p :

Pressure (N m−2)

P :

Normalized pressure

Pe:

Thermal Peclet number

q s :

Wall heat flux (W m−2)

Re:

Reynolds number

S″:

Local entropy generation rate (W K−1 m−3)

T :

Temperature (K)

\({\vec{\mathbf{V}}}\) :

Velocity field (m s−1)

\({\overline{\text{u}}}\) :

Dimensionless velocity field

U HS :

Helmholtz–Smoluchowski velocity (m s−1)

u,v :

x- and y-velocity component (m s−1)

U,V:

Dimensionless x and y velocity

X,Y:

Dimensionless coordinate

Z:

Valence

β :

Slip length (m)

β :

Slip coefficient

ε :

Permittivity of the medium (C V−1 m−1)

λ D :

Debye length (m)

κ :

Debye parameter

μ :

Dynamic viscosity (kg/m s)

θ :

Dimensionless temperature

Θ:

Dimensionless parameter

ρ f :

Fluid density (kg m−3)

ρ e :

Surface charge density (C m−2)

σ :

Fluid electrical conductivity (S m−1)

υ :

Steric factor

ψ :

EDL potential (V)

\(\overline{\psi }\) :

Dimensionless EDL potential

ζ*:

Zeta potential (V)

ζ :

Normalized zeta potential

avg:

Average

i:

Inlet

r:

Reference

s:

Surface

t:

Total

References

  1. Nisar A, Afzulpurkar N, Mahaisavariya B, Tuantranont A. MEMS-based micropumps in drug delivery and biomedical applications. Sensors Actuators B Chem. 2008;130:917–42.

    Article  CAS  Google Scholar 

  2. Mondal B, Mehta SK, Patowari PK, Pati S. Numerical study of mixing in wavy micromixers: comparison between raccoon and serpentine mixer. Chem Eng Process - Process Intensif. 2019;136:44–61.

    Article  CAS  Google Scholar 

  3. Wang X, Cheng C, Wang S, Liu S. Electroosmotic pumps and their applications in microfluidic systems. Microfluid Nanofluid. 2009;6:145–62.

    Article  CAS  Google Scholar 

  4. Mehta SK, Pati S, Mondal PK. Numerical study of the vortex-induced electroosmotic mixing of non-Newtonian biofluids in a nonuniformly charged wavy microchannel: effect of finite ion size. Electrophoresis. 2021;42:2498–510.

    Article  CAS  Google Scholar 

  5. Sujith T, Mehta SK, Pati S. Effect of Non-uniform heating on electroosmotic flow through microchannel. In: Pandey K, Misra R, Patowari P, Dixit U, editors. Recent advances in mechanical engineering lecture notes in mechanical engineering. Singapore: Springer; 2021. p. 499–508. https://doi.org/10.1007/978-981-15-7711-6_50.

    Chapter  Google Scholar 

  6. Horiuchi K, Dutta P. Joule heating effects in electroosmotically driven microchannel flows. Int J Heat Mass Transf. 2004;47:3085–95.

    Article  Google Scholar 

  7. Vasista KN, Mehta SK, Pati S. Numerical assessment of hydrodynamic and mixing characteristics for mixed electroosmotic and pressure-driven flow through a wavy microchannel with patchwise surface heterogeneity. Proc Inst Mech Eng Part E J Process Mech Eng. 2021. https://doi.org/10.1177/09544089211051640.

    Article  Google Scholar 

  8. Eng PF, Nithiarasu P, Arnold AK, Igic P, Guy OJ. Electro-osmotic flow based cooling system for microprocessors. international conference on thermal, mechanical and multi-physics simulation experiments in microelectronics and micro-systems. In: EuroSime IEEE. 2007;1–5; https://doi.org/10.1109/ESIME.2007.360041.

  9. Wong PK, Wang TH, Deval JH, Ho CM. Electrokinetics in micro devices for biotechnology applications. IEEE/ASME Trans Mech. 2004;9:366–76.

    Article  Google Scholar 

  10. Parmar AS, Muschol M. Hydration and hydrodynamic interactions of lysozyme: effects of chaotropic versus kosmotropic ions. Biophys J. 2009;97:590–8.

    Article  CAS  Google Scholar 

  11. Armstrong JK, Wenby RB, Meiselman HJ, Fisher TC. The hydrodynamic radii of macromolecules and their effect on red blood cell aggregation. Biophys J. 2004;87:4259–70.

    Article  CAS  Google Scholar 

  12. Ahmadian Yazdi A, Sadeghi A, Saidi MH. Electrokinetic mixing at high zeta potentials: ionic size effects on cross stream diffusion. J Colloid Interface Sci. 2015;442:8–14.

    Article  CAS  Google Scholar 

  13. Paunov VN, Dimova RI, Kralchevsky PA, Broze G, Mehreteab A. The hydration repulsion between charged surfaces as an interplay of volume exclusion and dielectric saturation effects. J Colloid Interface Sci. 1996;182:239–48.

    Article  CAS  Google Scholar 

  14. Cervera J, García-Morales V, Pellicer J. Ion size effects on the electrokinetic flow in nanoporous membranes caused by concentration gradients. J Phys Chem B. 2003;107:8300–9.

    Article  CAS  Google Scholar 

  15. Kilic MS, Bazant MZ, Ajdari A. Steric effects in the dynamics of electrolytes at large applied voltages. I. Double-layer charging. Phys Rev E Stat Nonlinear Soft Matter Phys. 2007;75:1–16.

    Google Scholar 

  16. Das S, Chakraborty S. Steric-effect-induced enhancement of electrical-double-layer overlapping phenomena. Phys Rev E Stat Nonlinear Soft Matter Phys. 2011;84:2–5.

    Article  Google Scholar 

  17. Dey R, Ghonge T, Chakraborty S. Steric-effect-induced alteration of thermal transport phenomenon for mixed electroosmotic and pressure driven flows through narrow confinements. Int J Heat Mass Transf. 2013;56:251–62.

    Article  CAS  Google Scholar 

  18. Hegde AS, Harikrishnan AR. Interplay of high zeta potential and steric factor on the slip thermofluidics of power law fluids through narrow confinements. Int J Heat Mass Transf. 2022;185:122426.

    Article  CAS  Google Scholar 

  19. Cheng YP, Teo CJ, Khoo BC. Microchannel flows with superhydrophobic surfaces: effects of Reynolds number and pattern width to channel height ratio. Phys Fluids. 2009;21: 122004.

    Article  Google Scholar 

  20. Gaikwad HS, Basu DN, Mondal PK. Slip driven micro-pumping of binary system with a layer of non-conducting fluid under electrical double layer phenomenon. Colloids Surf A Physicochem Eng Asp. 2017;518:166–72.

    Article  CAS  Google Scholar 

  21. Gaikwad HS, Roy A, Mondal PK, Chimres N, Wongwises S. Irreversibility analysis in a slip aided electroosmotic flow through an asymmetrically heated microchannel: the effects of joule heating and the conjugate heat transfer. Anal Chim Acta. 2019;1045:85–97.

    Article  CAS  Google Scholar 

  22. Shit GC, Mondal A, Sinha A, Kundu PK. Two-layer electro-osmotic flow and heat transfer in a hydrophobic micro-channel with fluid–solid interfacial slip and zeta potential difference. Colloids Surf A Physicochem Eng Asp. 2016;506:535–49.

    Article  CAS  Google Scholar 

  23. Tandon V, Kirby BJ. Zeta potential and electroosmotic mobility in microfluidic devices fabricated from hydrophobic polymers: 2 Slip and interfacial water structure. Electrophoresis. 2008;29:1102–14.

    Article  CAS  Google Scholar 

  24. Tandon V, Bhagavatula SK, Nelson WC, Kirby BJ. Zeta potential and electroosmotic mobility in microfluidic devices fabricated from hydrophobic polymers: 1 the origins of charge. Electrophoresis. 2008;29:1092–101.

    Article  CAS  Google Scholar 

  25. Tretheway DC, Meinhart CD. Apparent fluid slip at hydrophobic microchannel walls. Phys Fluids. 2002;14:L9-12.

    Article  CAS  Google Scholar 

  26. Misra JC, Sinha A. Electro-osmotic flow and heat transfer of a non-Newtonian fluid in a hydrophobic microchannel with Navier slip. J Hydrodyn. 2015;27:647–57.

    Article  Google Scholar 

  27. Sarma R, Shukla AK, Gaikwad HS, Mondal PK, Wongwises S. Effect of conjugate heat transfer on the thermo-electro-hydrodynamics of nanofluids: entropy optimization analysis. J Therm Anal Calorim. 2022;147:599–614.

    Article  CAS  Google Scholar 

  28. Najjaran S, Rashidi S, Valipour MS. An entropy production analysis for electroosmotic flow and convective heat transfer: a numerical investigation. J Therm Anal Calorim. 2021;145:1877–89.

    Article  CAS  Google Scholar 

  29. Xie ZY, Jian YJ. Entropy generation of two-layer magnetohydrodynamic electroosmotic flow through microparallel channels. Energy. 2017;139:1080–93. https://doi.org/10.1016/j.energy.2017.08.038.

    Article  Google Scholar 

  30. Hussein AK. Entropy generation due to the transient mixed convection in a three- dimensional right-angle triangular cavity. Int J Mech Sci. 2018;146–147:141–51.

    Article  Google Scholar 

  31. Al-Rashed AAAA, Kalidasan K, Kolsi L, Velkennedy R, Aydi A, Hussein AK, et al. Mixed convection and entropy generation in a nanofluid filled cubical open cavity with a central isothermal block. Int J Mech Sci. 2018;135:362–75.

    Article  Google Scholar 

  32. Al-rashed AAAA, Kolsi L, Kadhim A, Hassen W. Case studies in thermal engineering numerical study of three-dimensional natural convection and entropy generation in a cubical cavity with partially active vertical walls. Case Stud Therm Eng. 2017;10:100–10.

    Article  Google Scholar 

  33. Kumar K, Kumar R, Bharj RS. Entropy generation analysis due to heat transfer and nanofluid flow through microchannels: a review. Int J Exergy. 2020;31:49–86.

    Article  CAS  Google Scholar 

  34. Awad MM. A review of entropy generation in microchannels. Adv Mech Eng. 2015;7:12.

    Article  Google Scholar 

  35. Huminic G, Huminic A. Entropy generation of nanofluid and hybrid nanofluid flow in thermal systems: a review. J Mol Liq. 2020;302: 112533.

    Article  CAS  Google Scholar 

  36. Zhao L, Liu LH. Entropy generation analysis of electro-osmotic flow in open-end and closed-end. Int J Therm Sci. 2010;49:418–27.

    Article  Google Scholar 

  37. Gorla R. Entropy generation in electro-osmotic flow in microchannels. Int J Micro-Nano Scale Transp. 2013;4:1–16.

    Article  Google Scholar 

  38. Escandón J, Bautista O, Méndez F. Entropy generation in purely electroosmotic flows of non-Newtonian fluids in a microchannel. Energy. 2013;55:486–96.

    Article  Google Scholar 

  39. Shamshiri M, Khazaeli R, Ashrafizaadeh M, Mortazavi S. Heat transfer and entropy generation analyses associated with mixed electrokinetically induced and pressure-driven power-law microflows. Energy. 2012;42:157–69.

    Article  CAS  Google Scholar 

  40. Habibi M, Ahmed W. Entropy generation analysis of heat and mass transfer in mixed electrokinetically and pressure driven flow through a slit microchannel. Energy. 2013;56:207–17.

    Article  Google Scholar 

  41. Pabi S, Mehta SK, Pati S. Analysis of thermal transport and entropy generation characteristics for electroosmotic flow through a hydrophobic microchannel considering viscoelectric effect. Int Commun Heat Mass Transf. 2021;127: 105519.

    Article  Google Scholar 

  42. Noreen S, Ain QU. Entropy generation analysis on electroosmotic flow in non-Darcy porous medium via peristaltic pumping. J Therm Anal Calorim. 2019;137:1991–2006.

    Article  CAS  Google Scholar 

  43. Yang C, Jian Y, Xie Z, Li F. Electromagnetohydrodynamic electroosmotic flow and entropy generation of third-grade fluids in a parallel microchannel. Micromachines. 2020;11:418.

    Article  Google Scholar 

  44. Deng S, Li M, Yang Y, Xiao T. Heat transfer and entropy generation in two layered electroosmotic flow of power-law nanofluids through a microtube. Appl Therm Eng. 2021;196: 117314.

    Article  CAS  Google Scholar 

  45. Mallick B, Misra JC. Interplay of steric factor and high zeta potential on entropy generation during nanofluid slip flow in a microfluidic tube. Eur Phys J Plus. 2021;137:868.

    Article  Google Scholar 

  46. Liu Y, Jian Y. The effects of finite ionic sizes and wall slip on entropy generation in electroosmotic flows in a soft nanochannel. J Heat Transfer. 2019;141: 102401.

    Article  Google Scholar 

  47. Banerjee D, Mehta SK, Pati S, Biswas P. Analytical solution to heat transfer for mixed electroosmotic and pressure-driven flow through a microchannel with slip-dependent zeta potential. Int J Heat Mass Transf. 2021;181: 121989.

    Article  CAS  Google Scholar 

  48. Laouira H, Mebarek-Oudina F, Hussein AK, Kolsi L, Merah A, Younis O. Heat transfer inside a horizontal channel with an open trapezoidal enclosure subjected to a heat source of different lengths. Heat Transf Asian Res. 2020;49:406–23.

    Article  Google Scholar 

  49. Mohammed HA, Al-Aswadi AA, Abu-Mulaweh HI, Hussein AK, Kanna PR. Mixed convection over a backward-facing step in a vertical duct using nanofluids-buoyancy opposing case. J Comput Theor Nanosci. 2014;11:860–72.

    Article  CAS  Google Scholar 

  50. Ali E, Park J, Park H. Numerical investigation of enhanced heat transfer in a rectangular channel with winglets. Heat Transf Eng. 2021;42:695–705.

    Article  CAS  Google Scholar 

  51. Mondal P, Maiti DK, Shit GC. Heat transfer and entropy generation in a MHD Couette–Poiseuille flow through a microchannel with slip, suction–injection and radiation. J Therm Anal Calorim. 2021;147:4253–73.

    Article  Google Scholar 

  52. Arabpour A, Karimipour A, Toghraie D. Investigation into the effects of slip boundary condition on nanofluid flow in a double-layer microchannel. J Therm Anal Calorim. 2018;131:2975–91.

    Article  CAS  Google Scholar 

  53. Mehta SK, Pati S. Analysis of thermo-hydraulic performance and entropy generation characteristics for laminar flow through triangular corrugated channel. J Therm Anal Calorim. 2019;136:49–62.

    Article  CAS  Google Scholar 

  54. Mei L, Gao Y, Chen Z. A Galerkin finite element method for numerical solutions of the modified regularized long wave equation. Abstr Appl Anal. 2014. https://doi.org/10.1155/2014/438289.

    Article  Google Scholar 

  55. Ismael MA, Hussein AK, Mebarek-Oudina F, Kolsi L. Effect of driven sidewalls on mixed convection in an open trapezoidal cavity with a channel. J Heat Transfer. 2020;142:1–11.

    Article  Google Scholar 

  56. Hsieh SS, Lin HC, Lin CY. Electroosmotic flow velocity measurements in a square microchannel. Colloid Polym Sci. 2006;284:1275–86.

    Article  CAS  Google Scholar 

  57. Venditti R, Xuan X, Li D. Experimental characterization of the temperature dependence of zeta potential and its effect on electroosmotic flow velocity in microchannels. Microfluid Nanofluidics. 2006;2:493–9.

    Article  CAS  Google Scholar 

  58. Kang Y, Yang C, Huang X. Electroosmotic flow in a capillary annulus with high zeta potentials. J Colloid Interface Sci. 2002;253:285–94.

    Article  CAS  Google Scholar 

  59. Chen CH. Thermal transport characteristics of mixed pressure and electro-osmotically driven flow in micro- and nanochannels with joule heating. J Heat Transfer. 2009;131:1–10.

    Article  CAS  Google Scholar 

  60. Liu Y, Jian Y, Tan W. Entropy generation of electromagnetohydrodynamic (EMHD) flow in a curved rectangular microchannel. Int J Heat Mass Transf. 2018;127:901–13. https://doi.org/10.1016/j.ijheatmasstransfer.2018.06.147.

    Article  CAS  Google Scholar 

  61. Voronov RS, Papavassiliou DV, Lee LL. Review of fluid slip over superhydrophobic surfaces and its dependence on the contact angle. Ind Eng Chem Res. 2008;47:2455–77.

    Article  CAS  Google Scholar 

  62. Pati S, Som SK, Chakraborty S. Thermodynamic performance of microscale swirling flows with interfacial slip. Int J Heat Mass Transf. 2013;57:397–401.

    Article  Google Scholar 

  63. Banerjee D, Pati S, Biswas P. Analytical study of two-layered mixed electro-osmotic and pressure-driven flow and heat transfer in a microchannel with hydrodynamic slippage and asymmetric wall heating. Phys Fluids. 2022;34: 032013.

    Article  CAS  Google Scholar 

  64. Pati S, Som SK, Chakraborty S. Combined influences of electrostatic component of disjoining pressure and interfacial slip on thin film evaporation in nanopores. Int J Heat Mass Transf. 2013;64:304–12.

    Article  Google Scholar 

  65. Vasista KN, Mehta SK, Pati S, Sarkar S. Electroosmotic flow of viscoelastic fluid through a microchannel with slip-dependent zeta potential. Phys Fluids. 2021;33: 123110.

    Article  CAS  Google Scholar 

  66. Pati S, Som SK, Chakraborty S. Slip-driven alteration in film condensation over vertical surfaces. Int Commun Heat Mass Transf. 2013;46:37–41.

    Article  Google Scholar 

  67. Zhao G, Jian Y. Thermal transport of combined electroosmotically and pressure driven nanofluid flow in soft nanochannels. J Therm Anal Calorim. 2019;135:379–91.

    Article  CAS  Google Scholar 

  68. Tardu S. The electric double layer effect on the microchannel flow stability and heat transfer. Superlattices Microstruct. 2004;35:513–29.

    Article  CAS  Google Scholar 

  69. Mondal B, Mehta SK, Pati S, Patowari PK. Numerical analysis of electroosmotic mixing in a heterogeneous charged micromixer with obstacles. Chem Eng Process - Process Intensif. 2021;168: 108585.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Sujith.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sujith, T., Mehta, S.K. & Pati, S. Effect of finite size of ions on entropy generation characteristics for electroosmotic flow through microchannel considering interfacial slip. J Therm Anal Calorim 148, 489–503 (2023). https://doi.org/10.1007/s10973-022-11731-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-022-11731-8

keywords

Navigation