Skip to main content
Log in

DSC analysis of the influence of time and concentration of Stryphnodendron adstringens extract on corneal cross-linking

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Keratoconus is an ectasia that leads to reduced stiffness of the cornea, which acquires a conical shape. Many studies are being carried out aiming at new treatments that lead to the recovery of these cross-links. Therefore, the efficiency of the Stryphnodendron adstringens butanolic extract in promoting cross-linking in corneal stroma of porcine eyes was analyzed. The influence of concentration of this plant extract to form cross-links was analyzed, as well as the influence of the contact time. The denaturation temperature results obtained for corneas treated with 1, 2, or 4% of the barbatimão butanolic extract show an increase of 3.84, 11.37, and 33.23%, respectively. These results suggest a rise in the number of cross-links. As for the contact time of the cornea with the 2% solution of the butanolic extract, it appears that the ideal time was 60 min. Enzymatic digestion assays confirm a decrease of 39% and 59% in the relative area and relative mass of corneas in the control group, while for the group treated with the barbatimão extract, these values were close to 0% and 9%, respectively. Therefore, it was possible to verify the efficiency of the barbatimão butanolic extract in modifying the stroma of porcine corneas, which promoted an increase in resistance to thermal and enzymatic degradation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Schor P, Chaib A, Chamon W, Freitas DD. Atypical Corneal Ectasia. Arq Bras Oftalmol. 1995;58:365–6.

    Article  Google Scholar 

  2. Panthagani J, Hamze H, Riaz A, Moussa G. Evaluating the quality and readability of online information on keratoconus treatment. Can J Ophthalmol. 2021;S0008–4182(21):00351–3.

    Google Scholar 

  3. Grisevic S, Gilevska F, Biscevic A, Ahmedbegovic-Pjano M, Bohac M, Pidro A. Keratoconus progression classification one year after performed crosslinking method based on ABCD keratoconus grading system. Acta Inform Med. 2020;28(1):18.

    Article  Google Scholar 

  4. Wollensak G. Crosslinking treatment of progressive keratoconus: new hope. Curr Opin Ophthalmol. 2006;17(4):356–60.

    Article  Google Scholar 

  5. Romero-Jiménez M, Santodomingo-Rubido J, Wolffsohn JS. Keratoconus: a review. Cont Lens Anterior Eye. 2010;33(4):157–66.

    Article  Google Scholar 

  6. Colin J, Cochener B, Savary G, Malet F. Correcting keratoconus with intracorneal rings. J Cataract Refract Surg. 2000;26(8):1117–22.

    Article  CAS  Google Scholar 

  7. Han DC, Mehta JS, Por YM, Htoon HM, Tan DT. Comparison of outcomes of lamellar keratoplasty and penetrating keratoplasty in keratoconus. Am J Ophthalmol. 2009;148(5):744–51.

    Article  Google Scholar 

  8. Wollensak G, Spoerl E, Seiler T. Riboflavin/ultraviolet-A–induced collagen crosslinking for the treatment of keratoconus. Am J Ophthalmol. 2003;135(5):620–7.

    Article  CAS  Google Scholar 

  9. Pedrotti E, Chierego C, Bonacci E, De Gregorio A, De Rossi A, Zuliani A, Fasolo A, Marchini G. New treatments for keratoconus. Int Ophthalmol. 2020;40(7):1619–23.

    Article  Google Scholar 

  10. Sakai J, Hung J, Zhu G, Katakami C, Boyce S, Kao WWY. Collagen metabolism during healing of lacerated rabbit corneas. Exp Eye Res. 1991;52(3):237–44.

    Article  CAS  Google Scholar 

  11. Spoerl E, Mrochen M, Sliney D, Trokel S. Seiler T Safety of UVA-riboflavin cross-linking of the cornea. Cornea. 2007;26(4):385–9.

    Article  Google Scholar 

  12. Wollensak G, Spörl E, Reber F, Pillunat L, Funk R. Corneal endothelial cytotoxicity of riboflavin/UVA treatment in vitro. Ophthalmic Res. 2003;35(6):324–8.

    Article  CAS  Google Scholar 

  13. Spoerl E, Huhle M, Seiler T. Induction of cross-links in corneal tissue. Exp Eye Res. 1998;66(1):97–103.

    Article  CAS  Google Scholar 

  14. Wollensak G, Iomdina E. Long-term biomechanical properties after collagen crosslinking of sclera using glyceraldehyde. Acta Ophthalmol. 2008;86(8):887–93.

    Article  Google Scholar 

  15. Paik DC, Wen Q, Braunstein RE, Airiani S, Trokel SL. Initial studies using aliphatic β-nitro alcohols for therapeutic corneal cross-linking. Invest Ophthalmol Vis Sci. 2009;50(3):1098–105.

    Article  Google Scholar 

  16. Han B, Jaurequi J, Tang BW, Nimni ME. Proanthocyanidin: a natural crosslinking reagent for stabilizing collagen matrices. J Biomed Mater Res A. 2003;65(1):118–24.

    Article  Google Scholar 

  17. Avila MY, Navia JL. Effect of genipin collagen crosslinking on porcine corneas. J Cataract Refract Surg. 2010;36(4):659–64.

    Article  Google Scholar 

  18. Dornas W C, Oliveira TTD, Rodrigues-das-Dores RG, Santos AFD, Nagem TJ. Flavonóides: potencial terapêutico no estresse oxidativo. Rev Cienc Farm Basica Apl. 2007;28(3).

  19. Mello JCP, Petereit F, Nahrstedt A. A dimeric proanthocyanidin from Stryphnodendron adstringens. Phytochemistry. 1999;51(8):1105–7.

    Article  Google Scholar 

  20. Gu L, Kelm M, Hammerstone JF, Beecher G, Cunningham D, Vannozzi S, Prior RL. Fractionation of polymeric procyanidins from lowbush blueberry and quantification of procyanidins in selected foods with an optimized normal-phase HPLC−MS fluorescent detection method. J Agric Food Chem. 2002;50(17):4852–60.

    Article  CAS  Google Scholar 

  21. Karamac M, Kosiñska A, Chavan UD. Rapid chromatographic method for separation of green tea proanthocyanidins. Polish J Food Nutr Sci. 2005;14(3):243.

    CAS  Google Scholar 

  22. Liu SX, White E. Extraction and characterization of proanthocyanidins from grape seeds. Open Food Sci J. 2012. https://doi.org/10.2174/1874256401206010005.

    Article  Google Scholar 

  23. Prasain JK, Peng N, Dai Y, Moore R, Arabshahi A, Wilson L, Barnes S, Wyss JM, Kim H, Watts RL. Liquid chromatography tandem mass spectrometry identification of proanthocyanidins in rat plasma after oral administration of grape seed extract. Phytomedicine. 2009;16(2–3):233–43.

    Article  CAS  Google Scholar 

  24. Schauss AG, Wu X, Prior RL, Ou B, Patel D, Huang D, Kababick JP. Phytochemical and nutrient composition of the freeze-dried Amazonian palm berry, Euterpe oleraceae Mart.(Acai). J Agric Food Chem. 2006;54(22):8598–603.

    Article  CAS  Google Scholar 

  25. Beecher GR. Proanthocyanidins: biological activities associated with human health. Pharm Biol. 2004;42(sup1):2–20.

    Article  CAS  Google Scholar 

  26. Patel S, Mathan JJ, Vaghefi E, Braakhuis AJ. The effect of flavonoids on visual function in patients with glaucoma or ocular hypertension: a systematic review and meta-analysis. Graefes Arch Clin Exp Ophthalmol. 2015;253(11):1841–50.

    Article  CAS  Google Scholar 

  27. Bersanetti PA, Bueno TL, Morandim-Giannetti AA, Nogueira RF, Matos JR, Schor P. Characterization of rabbit corneas subjected to stromal stiffening by the acai extract (Euterpe oleracea). Curr Eye Res. 2017;42(4):528–33.

    Article  Google Scholar 

  28. Ku CS, Sathishkumar M, Mun SP. Binding affinity of proanthocyanidin from waste Pinus radiata bark onto proline-rich bovine achilles tendon collagen type I. Chemosphere. 2007;67(8):1618–27.

    Article  CAS  Google Scholar 

  29. Zhai W, Chang J, Lin K, Wang J, Zhao Q, Sun X. Crosslinking of decellularized porcine heart valve matrix by procyanidins. Biomaterials. 2006;27(19):3684–90.

    Article  CAS  Google Scholar 

  30. Araujo ES, Lorenço MS, Zidanes UL, Sousa TB, Mota GS, Reis VNO, Silva NG, Mori FA. Quantification of the bark Myrcia eximia DC tannins from the Amazon rainforest and its application in the formulation of natural adhesives for wood. J Clean Prod. 2021;280:124324.

    Article  Google Scholar 

  31. Nascimento KM, Cavalheiro JB, Netto AÁM, Scapim MRS, Bergamasco RC. Properties of alginate films incorporated with free and microencapsulated Stryphnodendron adstringens extract (barbatimão). Food Packag Shelf Life. 2021;28:100637.

    Article  CAS  Google Scholar 

  32. Bersanetti PA, Cruz LGI, Carlstron R, Schor P, Morandim-Giannetti AA. DSC characterization of enzymatic digestion of corneas treated with plant extracts rich in polyphenols. J Therm Anal Calorim. 2019;138(5):3797–802.

    Article  CAS  Google Scholar 

  33. Cruz LGI, Moraes GA, Nogueira RF, Morandim-Giannetti AA, Bersanetti PA. DSC characterization of rabbit corneas treated with Stryphnodendron adstringens (Mart.) Coville extracts. J Therm Anal Calorim. 2018;131(1):621–5.

    Article  Google Scholar 

  34. Danilov NA, Ignatieva NY, Iomdina EN, Semenova SA, Rudenskaya GN, Grokhovskaya TE, Lunin VV. Stabilization of scleral collagen by glycerol aldehyde cross-linking. Biochim Biophys Acta Gen Subj. 2008;1780(5):764–72.

    Article  CAS  Google Scholar 

  35. Ignati’eva NY, Danilov NA, Lunin VV, Obrezkova MV, Averkiev SV, Chaikovskii TI. Alteration of the thermodynamic characteristics of corneal collagen denaturation as a result of nonenzymatic glycation. Moscow Univ Chem Bull. 2007;62(2):63–6.

    Article  Google Scholar 

  36. Miles CA, Avery NC, Rodin VV, Bailey AJ. The increase in denaturation temperature following cross-linking of collagen is caused by dehydration of the fibres. J Mol Biol. 2005;346(2):551–6.

    Article  CAS  Google Scholar 

  37. Tang P, Zheng T, Yang C, Li G. Enhanced physicochemical and functional properties of collagen films cross-linked with laccase oxidized phenolic acids for active edible food packaging. Food Chem. 2022;393: 133353.

    Article  CAS  Google Scholar 

  38. Merrett K, Liu W, Mitra D, Camm KD, McLaughlin CR, Liu Y, Watsky MA, Li F, Griffith M, Fogg DE. Synthetic neoglycopolymer-recombinant human collagen hybrids as biomimetic crosslinking agents in corneal tissue engineering. Biomaterials. 2009;30(29):5403–8.

    Article  CAS  Google Scholar 

  39. Wang YJ, Guo J, Chen H, Shan ZH. Influence of containing moisture on hydrothermal stability of modified collagen thermal characteristics analysis by DSC. J Therm Anal Calorim. 2010;99:295–300.

    Article  CAS  Google Scholar 

  40. Chakarska I, Todinova S, Idakieva K. Investigation on chemical cross-linked collagen phosphoric acid hydrolysates with cyanuric chloride by differential scanning calorimetry. J Therm Anal Calorim. 2010;102:1–7.

    Article  CAS  Google Scholar 

  41. Onem E, Yorgancioglu A, Karavana HA, Yilmaz O. Comparison of different tanning agents on the stabilization of collagen via differential scanning calorimetry. J Therm Anal Calorim. 2017;129:615–22.

    Article  CAS  Google Scholar 

  42. Luximon-Ramma A, Bahorun T, Crozier A, Zbarsky V, Datla KP, Dexter DT, Aruoma OI. Characterization of the antioxidant functions of flavonoids and proanthocyanidins in Mauritian black teas. Food Res Int. 2005;38(4):357–67.

    Article  CAS  Google Scholar 

  43. Spoerl E, Wollensak G, Seiler T. Increased resistance of crosslinked cornea against enzymatic digestion. Curr Eye Res. 2004;29(1):35–40.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the grant #2016/19933-5 from São Paulo Research Foundation (FAPESP).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analyses were performed by PAB, AAM, and AAM-G. The first draft of the manuscript was written by AAM-G and PAB, and all authors commented on previous versions of the manuscript. All authors have read and approved the final manuscript.

Corresponding author

Correspondence to Patrícia Alessandra Bersanetti.

Ethics declarations

Conflict of interest

There are no conflicts of interest associated with this work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bersanetti, P.A., Marquini, A.d. & Morandim-Giannetti, A.d. DSC analysis of the influence of time and concentration of Stryphnodendron adstringens extract on corneal cross-linking. J Therm Anal Calorim 148, 191–195 (2023). https://doi.org/10.1007/s10973-022-11730-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-022-11730-9

Keywords

Navigation