Skip to main content
Log in

A comprehensive review of the importance of thermal activation in the production of carbon dots and the potential for their use in the bioenergy industry

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The structure, thermal analysis, optical properties, and emission mechanism of fluorescent carbon dots (CDs) have been improved as a result of a vast quantity of new study. Unlike quantum confinement outcomes in quantum dots, CDs usually suffer from intricate optical characteristics coming from a variety of raw materials and synthesis processes based on thermal treatment. The thermal-treatment-based synthesis of CDs and their application in bioenergy systems are discussed in this review. Heating rate, gas atmosphere, and heating regime are among the parameters used in the thermal study of carbon nanomaterials, allowing researchers to investigate the necessary characteristics for applications such as biomass production, photo-catalysis, biodiesel, optoelectronics, and photo-thermal energy conversion. In general, this review proposes CDs as a unified definition of reported carbon nanomaterials, summarises the thermal properties of CDs derived from the formation process, optical properties, and redox characteristics of CDs, and illustrates energy conversion applications, as well as the related mechanistic framework and relationships. The thermal analysis CDs' unique properties may bring up new opportunities and difficulties in a variety of fields. This review also covers energy conversion applications, including the framework and linkages of the mechanisms involved. It is thought that the use of CDs constitutes an advance in the core capabilities of thermal analysis and may provide new perspectives and difficulties in a broader range of applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Chiu SH, Gedda G, Girma WM, Chen JK, Ling YC, Ghule AV, Ou KL, Chang JY. Rapid fabrication of carbon quantum dots as multifunctional nanovehicles for dual-modal targeted imaging and chemotherapy. Acta Biomater. 2016;46:151–64.

    Article  CAS  Google Scholar 

  2. Wang W, Cheng L, Liu W. Biological applications of carbon dots. Sci China Chem. 2014;57(4):522–39.

    Article  CAS  Google Scholar 

  3. Rani UA, Ng LY, Ng CY, Mahmoudi E. A review of carbon quantum dots and their applications in wastewater treatment. Adv Colloid Interface Sci. 2020;278:102124.

    Article  Google Scholar 

  4. Seenuvasan M, Suganthi JRG, Gopalakrishnan Malar GCG, Priya ME, Kumar MA. Effective utilization of crustacean shells for preparing chitosan composite beads: applications in ameliorating the biosorption of an endocrine disrupting heavy metal. Desal Water Treat. 2018;121:28–35.

    Article  CAS  Google Scholar 

  5. Zhu J, Bai X, Chen X, Shao H, Zhai Y, Pan G, Rogach AL. Spectrally tunable solid state fluorescence and room-temperature phosphorescence of carbon dots synthesized via seeded growth method. Adv Opt Mater. 2019. https://doi.org/10.1002/adom.201801599.

    Article  Google Scholar 

  6. Innocenzi P, Stagi L. Carbon-based antiviral nanomaterials, graphene, C-dots and fullerenes. A perspective. Chem Sci. 2020. https://doi.org/10.1039/d0sc02658a.

    Article  Google Scholar 

  7. Wyrzykowski D, Hebanowska E, Nowak-Wiczk G, Makowski M, Chmurzyński L. Thermal behaviour of citric acid and isomeric aconitic acids. J Therm Anal Calorim. 2010;104:731–5.

    Article  Google Scholar 

  8. Shamsipu M, Barati A, Karami S. Long-wavelength, multicolor, and white-light-emitting carbon-based dots: achievements made, challenges remaining, and applications. Carbon. 2017;124:429–72.

    Article  Google Scholar 

  9. Gan N, Shi H, An Z, Huang W. Recent advances in polymer-based metal-free room-temperature phosphorescent materials. Adv Funct Mater. 2018;28:1802657.

    Article  Google Scholar 

  10. He Z, Zhao W, Lam JWY, Peng Q, Ma H, Liang G, Shuai Z, Tang BZ. White light emission from a single organic molecule with dual phosphorescence at room temperature. Nat Commun. 2017;8:416. https://doi.org/10.1038/s41467-017-00362-5.

    Article  CAS  Google Scholar 

  11. Xia C, Zhu S, Feng T, Yang M, Yang B. Evolution and synthesis of carbon dots: from carbon dots to carbonized polymer dots. Adv Sci. 2019;6:1901316. https://doi.org/10.1002/advs.201901316.

    Article  CAS  Google Scholar 

  12. Niu W-J, Li Y, Zhu R-H, Shan D, Fan Y-R, Zhang X-J. Ethylenediamine-assisted hydrothermal synthesis of nitrogen-doped carbon quantum dots as fluorescent probes for sensitive biosensing and bioimaging. Sens Actuat B Chem. 2015;218:229–36.

    Article  CAS  Google Scholar 

  13. Han Z, He L, Pan S, Liu H, Hu X. Hydrothermal synthesis of carbon dots and their application for detection of chlorogenic acid. Luminescence. 2020. https://doi.org/10.1002/bio.3803.

    Article  Google Scholar 

  14. He Z, Zhao W, Lam JWY, Peng Q, Ma H, Liang G, Shuai Z, Tang BZ. White light emission from a single organic molecule with dual phosphorescence at room temperature. Nat Commun. 2017;4(8):416.

    Article  Google Scholar 

  15. Ren J, Malfatti L, Innocenzi P. Citric acid derived carbon dots, the challenge of understanding the synthesis-structure relationship. C J Carbon Res. 2020. https://doi.org/10.3390/c7010002.

    Article  Google Scholar 

  16. Dager A, Uchida T, Maekawa T, Tachibana M. Synthesis and characterization of mono-disperse carbon quantum dots from fennel seeds: photoluminescence analysis using machine learning. Sci Rep. 2019;9:14004.

    Article  Google Scholar 

  17. Ahmed GH, Laíño RB, Calzón JA, García ME. Fluorescent carbon nanodots for sensitive and selective detection of tannic acid in wines. Talanta. 2015;132:252–7.

    Article  CAS  Google Scholar 

  18. De Medeiros TV, Manioudakis J, Noun F, Macairan J-R, Victoria F, Naccache R. Microwave-assisted synthesis of carbon dots and their applications. J Mater Chem C. 2019. https://doi.org/10.1039/c9tc01640f.

    Article  Google Scholar 

  19. López C, Zougagh M, Algarra M, Rodríguez-Castellón E, Campos BB, Esteves da Silva JC, Jiménez-Jiménez J, Ríos A. Microwave-assisted synthesis of carbon dots and its potential as analysis of four heterocyclic aromatic amines. Talanta. 2015;132:845–50.

    Article  Google Scholar 

  20. Ding H, Wei J-S, Zhang P, Zhou Z-Y, Gao Q-Y, Xiong H-M. Solvent-controlled synthesis of highly luminescent carbon dots with a wide color gamut and narrowed emission peak widths. Small. 2018;14:1800612.

    Article  Google Scholar 

  21. Sun H, Gao N, Wu L, Ren J, Wei W, Qu X. Highly photoluminescent amino-functionalized graphene quantum dots used for sensing copper ions. Chemistry. 2013;19(40):13362–8.

    Article  CAS  Google Scholar 

  22. Liu B, Guo S, Fan X, Gong X. Carbon quantum dot preparation and application to detecting active ingredients in traditional Chinese medicine. Acupunct Herbal Med. 2021;2:81–9.

    Article  CAS  Google Scholar 

  23. Bourlinos AB, Stassinopoulos A, Anglos D, Zboril R, Georgakilas V, Giannelis EP. Photoluminescent carbogenic dots. Chem Mater. 2008;20(14):4539–41.

    Article  CAS  Google Scholar 

  24. Wang Y, Dong L, Xiong R, Hu A. Practical access to bandgap-like N-doped carbon dots with dual emission unzipped from PAN@ PMMA core–shell nanoparticles. J Mater Chem C. 2013;1:7731–5.

    Article  CAS  Google Scholar 

  25. Wen X, Yu P, Toh Y-R, Lee Y-C, Hsu A-C, Tang J. Near-infrared enhanced carbon nanodots by thermally assisted growth. Appl Phys Lett. 2012;101:163107.

    Article  Google Scholar 

  26. Zuo P, Lu X, Sun Z, Guo Y, He H. A review on syntheses, properties, characterization and bioanalytical applications of fluorescent carbon dots. Microchim Acta. 2015;183:519–42.

    Article  Google Scholar 

  27. Dong Y, Shao J, Chen C, Li H, Wang R, Chi Y, Chen G. Blue luminescent graphene quantum dots and graphene oxide prepared by tuning the carbonization degree of citric acid. Carbon. 2012;50:4738–43.

    Article  CAS  Google Scholar 

  28. Liu H, Ye T, Mao C. Fluorescent carbon nanoparticles derived from candle soot. Angew Chem Int Ed Engl. 2007;46(34):6473–5.

    Article  CAS  Google Scholar 

  29. Pan L, Sun S, Zhang A, Jiang K, Zhang L, Dong C, Huang Q, Wu A, Lin H. Truly fluorescent excitation-dependent carbon dots and their applications in multicolor cellular imaging and multidimensional sensing. Adv Mater. 2015;27:7782.

    Article  CAS  Google Scholar 

  30. Shao J, Zhu S, Liu H, Song Y, Tao S, Yang B. Full-color emission polymer carbon dots with quench-resistant solid-state fluorescence. Adv Sci. 2017;4:1700395.

    Article  Google Scholar 

  31. Carlin GM. Dendrosomal capsaicin nanoformulation for the invitro anticancer effect on HEp 2 and MCF-7 cell lines. Int J Appl Bioeng. 2015;9(2):30–5.

    Google Scholar 

  32. Franca AS, Oliveira LS, Nunes AA, Alves CC. Microwave assisted thermal treatment of defective coffee beans press cake for the production of adsorbents. Bioresour Technol. 2010;101(3):1068–74.

    Article  CAS  Google Scholar 

  33. Gao P, Liu ZH, Xue G, Han B, Zhou MH. Preparation and characterization of activated carbon produced from rice straw by (NH4)2HPO4 activation. Bioresour Technol. 2011;102(3):3645–8.

    Article  CAS  Google Scholar 

  34. Sarkar S, Gandla D, Venkatesh Y, Bangal PR, Ghosh S, Yang Y, et al. Graphene quantum dots from graphite by liquid exfoliation showing excitation-independent emission, fluorescence upconversion and delayed fluorescence. Phys Chem Chem Phys. 2016;18(31):21278–87.

    Article  CAS  Google Scholar 

  35. Niu X, Li Y, Shu H, Wang J. Revealing the underlying absorption and emission mechanism of nitrogen doped graphene quantum dots. Nanoscale. 2016;8(46):19376–82.

    Article  CAS  Google Scholar 

  36. Ren X, Meng X, Ren J, Tang F. Graphitic carbon nitride nanosheets with tunable optical properties and their superoxide dismutase mimetic ability. RSC Adv. 2016;6(95):92839–44.

    Article  CAS  Google Scholar 

  37. Pan L, Sun S, Zhang L, Jiang K, Lin H. Near-infrared emissive carbon dots for two photon fluorescence bioimaging. Nanoscale. 2016;8(39):17350–6.

    Article  CAS  Google Scholar 

  38. Schneider J, Reckmeier CJ, Xiong Y, von Seckendorff M, Susha AS, Kasák P, Rogach AL. Molecular fluorescence in citric acid-based carbon dots. J Phys Chem C. 2017;121:2014–22.

    Article  CAS  Google Scholar 

  39. Gnansounou E, Dauriat A. Techno-economic analysis of lignocellulosic ethanol: a review. Bioresour Technol. 2010;101(13):4980–91.

    Article  CAS  Google Scholar 

  40. Cailotto S, Amadio E, Facchin M, Selva M, Pontoglio E, Rizzolio F, Perosa A. Carbon dots from sugars and ascorbic acid: role of the precursors on morphology, properties, toxicity, and drug uptake. ACS Med Chem Lett. 2018;9:832–7.

    Article  CAS  Google Scholar 

  41. Zhao QL, Zhang ZL, Huang BH, Peng J, Zhang M, Pang DW. Facile preparation of low cytotoxicity fluorescent carbon nanocrystals by electrooxidation of graphite. Chem Commun. 2008;41:5116–8.

    Article  Google Scholar 

  42. Yuan F, He P, Xi Z, Li X, Li Y, Zhong H, Yang S. Highly efficient and stable white LEDs based on pure red narrow bandwidth emission triangular carbon quantum dots for wide-color gamut backlight displays. Nano Res. 2019. https://doi.org/10.1007/s12274-019-2420-x.

    Article  Google Scholar 

  43. Kumar KV, Porkodi K, Rocha F. Comparison of various error functions in predicting the optimum isotherm by linear and non-linear regression analysis for the sorption of basic red 9 by activated carbon. J Hazard Mater. 2008;150:158–65.

    Article  CAS  Google Scholar 

  44. Ju B, Nie H, Liu Z, Xu H, Li M, Wu C, Wang H, Zhang SXA. Full-colour carbon dots: integration of multiple emission centres into single particles. Nanoscale. 2017;9:13326–33.

    Article  CAS  Google Scholar 

  45. Kushwaha JP, Srivastava VC, Mall ID. Treatment of dairy wastewater by commercial activated carbon and bagasse fly ash: parametric, kinetic and equilibrium modelling, disposal studies. Bioresour Technol. 2010;101:3474–83.

    Article  CAS  Google Scholar 

  46. Langmuir I. The constitution and fundamental properties of solids and liquids. Part I. Solids. J Am Chem Soc. 1916;1938:2221–95.

    Article  Google Scholar 

  47. Liu QS, Zheng T, Li N, Wang P, Abulikemu G. Modification of bamboo-based activated carbon using microwave radiation and its effects on the adsorption of methylene blue. Appl Surf Sci. 2010;256:3309–15.

    Article  CAS  Google Scholar 

  48. Nuithitikul K, Srikhun S, Hirunpraditkoon S. Influences of pyrolysis condition and acid treatment on properties of durian peel-based activated carbon. Bioresour Technol. 2010;101:426–9.

    Article  CAS  Google Scholar 

  49. Nunes AA, Franca AS, Oliveira LS. Activated carbons from waste biomass: an alternative use for biodiesel production solid residues. Bioresour Technol. 2009;100:1786–92.

    Article  CAS  Google Scholar 

  50. Ren J, Malfatti L, Innocenzi P. Citric acid derived carbon dots, the challenge of understanding the synthesis-structure relationship. C-J Carbon Res. 2020. https://doi.org/10.3390/c7010002.

    Article  Google Scholar 

  51. Ogi T, Aishima K, Permatasari FA, Iskandar F, Tanabe E, Okuyama K. Kinetics of nitrogen-doped carbon dot formation via hydrothermal synthesis. New J Chem. 2016;40:5555–61.

    Article  CAS  Google Scholar 

  52. Shang W, Cai T, Zhang Y, Liu D, Liu S. Facile one pot pyrolysis synthesis of carbon quantum dots and graphene oxide nanomaterials: all carbon hybrids as eco-environmental lubricants for low friction and remarkable wear-resistance. Tribol Int. 2018;118:373–80.

    Article  CAS  Google Scholar 

  53. Dhenadhayalan N, Lin KC, Suresh R, Ramamurthy P. Unravelling the multiple emissive states in citric-acid-derived carbon dots. J Phys Chem C. 2016;120:1252–61.

    Article  CAS  Google Scholar 

  54. Ong HC, Mahlia TMI, Masjuki HH. A review on energy scenario and sustainable energy in Malaysia. Renew Sustain Energy Rev. 2011;15:639–47.

    Article  Google Scholar 

  55. Singh A, Nigam PS, Murphy JD. Renewable fuels from algae: an answer to debatable land based fuels. Bioresour Technol. 2011;102:10–6.

    Article  CAS  Google Scholar 

  56. Tempkin MI, Pyzhev V. Kinetics of ammonia synthesis on promoted iron catalyst. Acta Phys Chim. 1940;12:327–56.

    Google Scholar 

  57. Wang TH, Tan SX, Liang CH. Preparation and characterization of activated carbon from wood via microwave-induced ZnCl2 activation. Carbon. 2009;47:1867–85.

    Article  Google Scholar 

  58. Wang L, Zhang J, Zhao R, Li Y, Li C, Zhang CL. Adsorption of Pb(II) on activated carbon prepared from polygonum orientale linn: kinetics, isotherms, pH, and ionic strength studies. Bioresour Technol. 2010;101:5808–14.

    Article  CAS  Google Scholar 

  59. Sharma A, Gadly T, Gupta A, Ballal A, Ghosh SK, Kumbhakar M. Origin of excitation dependent fluorescence in carbon nanodots. J Phys Chem Lett. 2016;7(18):3695–702.

    Article  CAS  Google Scholar 

  60. Reckmeier CJ, Schneider J, Xiong Y, Häusler J, Kasák P, Schnick W, Rogach AL. Aggregated molecular fluorophores in the ammonothermal synthesis of carbon dots. Chem Mater. 2017;29:10352–61.

    Article  CAS  Google Scholar 

  61. Yener J, Kopac T, Dogu G, Dogu T. Dynamic analysis of sorption of methylene blue dye on granular and powdered activated carbon. Chem Eng J. 2008;144:400–6.

    Article  CAS  Google Scholar 

  62. Yung BC, Gon S. High activity of acid-treated quail eggshell catalysts in the transesterification of palm oil with methanol. Bioresour Technol. 2010;101:8515–9.

    Article  Google Scholar 

  63. Bhattacharya A, Das S, Mukherjee TK. Insights into the thermodynamics of polymer nanodot-human serum albumin association: a spectroscopic and calorimetric approach. Langmuir. 2016;32:12067–77.

    Article  CAS  Google Scholar 

  64. Lee HJ, Jana J, Thi Ngo YL, Wang LL, Chung JS, Hur SH. The effect of solvent polarity on emission properties of carbon dots and their uses in colorimetric sensors for water and humidity. Mater Res Bull. 2019. https://doi.org/10.1016/j.materresbull.2019.110564.

    Article  Google Scholar 

  65. Wang H, Sun C, Chen X, Zhang Y, Colvin VL, Rice Q, Yu WW. Excitation wavelength independent visible color emission of carbon dots. Nanoscale. 2017;9:1909–15.

    Article  CAS  Google Scholar 

  66. Lin S, Lin C, He M, Yuan R, Zhang Y, Zhou Y, Liang X. Solvatochromism of bright carbon dots with tuneable long-wavelength emission from green to red and their application as solid-state materials for warm WLEDs. RSC Adv. 2017;7:41552–60.

    Article  CAS  Google Scholar 

  67. Derakhshan Z, Baghapour MA, Ranjbar M, Faramarzian M. Adsorption of methylene blue dye from aqueous solutions by modified pumice stone: kinetics and equilibrium studies. J Health Scope. 2013;2:136–44.

    Article  Google Scholar 

  68. Ju B, Nie H, Zhang X, Chen Q, Guo X, Xing Z, Zhang SXA. Inorganic salt incorporated solvothermal synthesis of multi-color carbon dots, emission mechanism and anti-bacterial study. ACS Appl Nano Mater. 2018. https://doi.org/10.1021/acsanm.8b01355.

    Article  Google Scholar 

  69. Park Y, Yoo J, Lim B, Kwon W. Rhee SW Improving the functionality of carbon nanodots: doping and surface functionalization. J Mater Chem A. 2016;4:11582–603.

    Article  CAS  Google Scholar 

  70. Sun D, Ban R, Zhang P-H, Wu G-H, Zhang J-R, Zhu J-J. Hair fiber as a precursor for synthesizing of sulfur- and nitrogen-co-doped carbon dots with tunable luminescence properties. Carbon. 2013;64:424–34.

    Article  CAS  Google Scholar 

  71. Song Y, Zhu S, Zhang S, Fu Y, Wang L, Zhao X, Yang B. Investigation from chemical structure to photoluminescent mechanism: a type of carbon dots from the pyrolysis of citric acid and an amine. J Mater Chem C. 2015;3(23):5976–84.

    Article  CAS  Google Scholar 

  72. Macina A, de Medeiros TV, Naccache R. A carbon dot-catalyzed transesterification reaction for the production of biodiesel. J Mater Chem A. 2019. https://doi.org/10.1039/c9ta05245c.

    Article  Google Scholar 

  73. Schobert H. Chemistry of fossil fuels and biofuels. Cambridge: Cambridge University Press; 2013.

    Book  Google Scholar 

  74. Wang B, Yu J, Sui L, Zhu S, Tang Z, Yang B, Lu S. Rational design of multi-color-emissive carbon dots in a single reaction system by hydrothermal. Adv Sci. 2020;8(1):2001453.

    Article  Google Scholar 

  75. Xue M, Zou M, Zhao J, Zhan Z, Zhao S. Green preparation of fluorescent carbon dots from lychee seeds and their application for the selective detection of methylene blue and imaging in living cells. J Mater Chem B. 2015;3:6783–9.

    Article  CAS  Google Scholar 

  76. Chunduri LAA, Kurdekar A, Patnaik S, Dev BV, Rattan TM, Kamisetti V. Carbon quantum dots from coconut husk: evaluation for antioxidant and cytotoxic activity. Mater Focus. 2016;5:55–61.

    Article  CAS  Google Scholar 

  77. Kumawat MK, Thakur M, Gurung RB, Srivastava R. Graphene quantum dots from Mangifera indica: application in near-infrared bioimaging and intracellular nanothermometry. ACS Sustain Chem Eng. 2017;5:1382–91.

    Article  CAS  Google Scholar 

  78. Xu X, Ray R, Gu Y, Ploehn HJ, Gearheart L, Raker K, Scrivens WA. Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments. J Am Chem Soc. 2004;126:12736–7.

    Article  CAS  Google Scholar 

  79. Li Q, Cheng H, Wu X, Wang CF, Wu G, Chen S. Enriched carbon dots/graphene microfibers towards high-performance micro-supercapacitors. J Mater Chem A. 2018;6:14112–9.

    Article  CAS  Google Scholar 

  80. Wei G, Zhao X, Du K, Huang Y, An C, Qiu S, Wu Y. Flexible asymmetric supercapacitors made of 3D porous hierarchical CuCo2O4 @CQDs and Fe2O3 @CQDs with enhanced performance. Electrochim Acta. 2018;283:248–59.

    Article  CAS  Google Scholar 

  81. Tjandra R, Liu W, Zhang M, Yu A. All-carbon flexible supercapacitors based on electrophoretic deposition of graphene quantum dots on carbon cloth. J Power Sources. 2018;438:227009.

    Article  Google Scholar 

  82. Tian W, Zhu J, Dong Y, Zhao J, Li J, Guo N, Lin H, Zhang S, Jia D. Micelle-induced assembly of graphene quantum dots into conductive porous carbon for high rate supercapacitor electrodes at high mass loadings. Carbon. 2020;161:89–96.

    Article  CAS  Google Scholar 

  83. Yang C, Aslan H, Zhang P, Zhu S, Xiao Y, Chen L, Yu M. Carbon dots-fed Shewanella oneidensis MR-1 for bioelectricity enhancement. Nat Commun. 2020. https://doi.org/10.1038/s41467-020-14866-0.

    Article  Google Scholar 

  84. Ren X, Zhang F, Guo B, Gao N, Zhang X. Synthesis of N-doped micropore carbon quantum dots with high quantum yield and dual-wavelength photoluminescence emission from biomass for cellular imaging. Nanomaterials. 2019;9:495.

    Article  CAS  Google Scholar 

  85. SunPatra, Santanu; Roy, Ekta; Madhuri, Rashmi; Sharma, Prashant K. (2016). Economic and ecofriendly synthesis of biocompatible heteroatom doped carbon nanodots for graphene oxide assay and live cell imaging. ACS Sustain Chem Eng, acssuschemeng.5b01446

  86. Wang K, Gao S, Du Z, Yuan A, Lu W, Chen L. MnO 2 -Carbon nanotube composite for high-areal-density supercapacitors with high rate performance. J Power Sources. 2016;305:30–6.

    Article  CAS  Google Scholar 

  87. Yao S, Hu Y, Li G. A one-step sonoelectrochemical preparation method of pure blue fluorescent carbon nanoparticles under a high intensity electric field. Carbon. 2014;66:77–83.

    Article  CAS  Google Scholar 

  88. Gunjal DB, Gurav YM, Gore AH, Naik VM, Waghmare RD, Patil CS, Kolekar GB. Nitrogen doped waste tea residue derived carbon dots for selective quantification of tetracycline in urine and pharmaceutical samples and yeast cell imaging application. Opti Mater. 2019;98:109484.

    Article  CAS  Google Scholar 

  89. Konar S, Kumar BNP, Mahto MK, Samanta D, Shaik MAS, Shaw M, Pathak A. N-doped carbon dot as fluorescent probe for detection of cysteamine and multicolor cell imaging. Sens Actuat B Chem. 2019. https://doi.org/10.1016/j.snb.2019.01.117.

    Article  Google Scholar 

  90. Yang L, Su Q, Si B, Zhang Y, Zhang Y, Yang H, Zhou X. Enhancing bioenergy production with carbon capture of microalgae by ultraviolet spectrum conversion via graphene oxide quantum dots. Chem Eng J. 2020;429:132230.

    Article  Google Scholar 

  91. Feng T, Tao S, Yue D, Zeng Q, Chen W, Yang B. Recent advances in energy conversion applications of carbon dots: from optoelectronic devices to electrocatalysis. Small. 2020;16:2001295.

    Article  CAS  Google Scholar 

  92. Wei D, Wang T, Gan Y, Xu X. Graphene quantum dots sensitized Zn-MOF for efficient visible-light-driven carbon dioxide reduction. Catal Sci Technol. 2020. https://doi.org/10.1039/d0cy00842g.

    Article  Google Scholar 

  93. Guo D, Wei HF, Song RB, Fu J, Lu X, Jelinek R, Zhu JJ. N, S-doped carbon dots as dual-functional modifiers to boost bio-electricity generation of individually-modified bacterial cells. Nano Energy. 2019. https://doi.org/10.1016/j.nanoen.2019.103875.

    Article  Google Scholar 

  94. Permatasari FA, Irham MA, Bisri SZ, Iskandar F. Carbon-Based quantum dots for supercapacitors: recent advances and future challenges. Nanomaterials. 2021;11(1):91.

    Article  CAS  Google Scholar 

  95. Sekoai PT, Ouma CNM, du Preez SP, Modisha P, Engelbrecht N, Bessarabov DG, Ghimire A. Application of nanoparticles in biofuels: an overview. Fuel. 2019;237:380–97.

    Article  CAS  Google Scholar 

  96. Anjum M, Kumar R, Abdelbasir SM, Barakat MA. Carbon nitride/titania nanotubes composite for photocatalytic degradation of organics in water and sludge: Pre-treatment of sludge, anaerobic digestion and biogas production. J Manage. 2018;223:495–502.

    CAS  Google Scholar 

  97. Long C, Jiang Z, Shangguan J, Qing T, Zhang P, Feng B. Applications of carbon dots in environmental pollution control: A review. Chem Eng J. 2020. https://doi.org/10.1016/j.cej.2020.126848.

    Article  Google Scholar 

  98. Bhagat R, Panakkal H, Gupta I, Ingle AP. Carbon-based nanocatalysts in biodiesel production. In: Nano- and biocatalysts for biodiesel production. New York: Wiley; 2021. p. 157–81.

    Chapter  Google Scholar 

  99. Babadi AA, Bagheri S, Hamid SB. Progress on implantable biofuel cell: Nano-carbon functionalization for enzyme immobilization enhancement. Biosens Bioelectron. 2016;79:850–60.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Carlin Geor Malar contributed to writing—review and editing; Muthulingam Seenuvasan contributed to conceptualization and supervision; Mohanraj Murugesan contributed to supervision; Gayathri Srinivasan contributed to writing—original draft; Rakesh Sankar contributed to writing.

Corresponding author

Correspondence to Carlin Geor Malar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malar, C.G., Muthulingam, S., Murugesan, M. et al. A comprehensive review of the importance of thermal activation in the production of carbon dots and the potential for their use in the bioenergy industry. J Therm Anal Calorim 148, 505–516 (2023). https://doi.org/10.1007/s10973-022-11687-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-022-11687-9

Keywords

Navigation