Skip to main content
Log in

The hydration behavior of polymer-incorporated calcium aluminate cement mortars at different curing temperatures

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The potential degradation of calcium aluminate cement (CAC) concrete due to the conversion of thermodynamically metastable compounds into stable phases is a well-known phenomenon. This research focuses on the effects of polymers on the hydration kinetics and strength development of calcium aluminate cement (CAC) mortars at two curing temperatures, i.e., 200 °C and 38 °C. The constant CAC content was used to prepare mortars. However, the sand was replaced by acrylic polymer (AP) (5%), vinyl acetate monomer/vinyl versetate polymer (VA/VV) (2%), and two different Poly (vinyl alcohol-co-vinyl acetate) (PVAc) (2%). Isothermal calorimetric investigations for 3 days, capillary absorption tests, flexural strength tests and compressive strength tests at 3, 7, 28, and 90 days were conducted. The hydration reactions of CAC mortars accelerated by replacing sand with polymer admixtures. The flexural strength of CAC mortar with the AP exhibited on-par compressive strength values at 20 °C. All the polymer-incorporated samples except VA/VV displayed an increase in their late-age mechanical properties than 28 days results, showing promising results for reduction in strength decline at a later stage. The PVAc-73 (i.e., 73% hydrolysis degree)-incorporated mortar was unaffected by increased curing temperature. The mortars exhibited early hydration behavior at increased temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The data, codes, and models devised or utilized in this research are presented in the submitted article.

Abbreviations

CAC:

Calcium aluminate cement

CAC-SP:

Calcium aluminate cement with superplasticizer

OPC:

Ordinary Portland cement

OPC-SP:

Ordinary Portland cement with superplasticizer

AP:

Acrylic polymer

VA/VV:

Vinyl acetate monomer/vinyl versetate polymer

PVAc-73:

Poly(vinyl alcohol-co-vinyl acetate)-PVAc (73.2% hydrolysis degree)

PVAc-79:

Poly(vinyl alcohol-co-vinyl acetate) PVAc (79.4% hydrolysis degree)

References

  1. Bizzozero J. Hydration and dimensional stability of calcium aluminate cement-based systems, PhD. Thesis, Faculty Science and Technology De L'ingénieur, Switzerland. 2014. https://doi.org/10.5075/epfl-thesis-6336.

  2. Warmuz K, Madej D. Comparison of the CAC-containing and CAC-free hydraulic binders in term of the hydrated matrix formation within refractory castables designed for the fast-drying procedure. J Therm Anal Calorim. 2022. https://doi.org/10.1007/s10973-022-11351-2.

    Article  Google Scholar 

  3. Jambor J, Skalny J. Another look at the deterioration of calcium aluminate cement concrete. Mater Constr. 1996;46:5–21. https://doi.org/10.3989/mc.1996.v46.i241.537.

    Article  CAS  Google Scholar 

  4. Bentivegna AF. Multi-scale characterization, implementation, and monitoring of calcium aluminate cement based-systems, PhD Thesis, The University of Texas at Austin, USA. 2012. http://hdl.handle.net/2152/ETD-UT-2012-05-5219.

  5. Ukrainczyk N, Rogina A. Styrene–butadiene latex modified calcium aluminate cement mortar. Cem Concr Compos. 1996;41:16–23. https://doi.org/10.1016/j.cemconcomp.2013.04.012.

    Article  CAS  Google Scholar 

  6. Midgley HG. High alumina cement in construction-a future based on experience, calcium aluminate cement. In: Mangabhai RJ, editor. London: Chapman and Hall; 1990. p. 1–13.

  7. Midgley HG. Quantitative determination of phases in high alumina cement clinkers by X-ray diffraction. Cem Concr Res. 1976;6(2):217–23.

    Article  CAS  Google Scholar 

  8. Adams MP, Lute RD, Moffatt EG, Ideker JH. Evaluation of a procedure for determining the converted strength of calcium aluminate cement concrete. J Test Eval. 2018;46:1659–72. https://doi.org/10.1520/JTE20160277.ISSN0090-3973.

    Article  CAS  Google Scholar 

  9. Falzone G, Balonis M, Sant G. X-AFm stabilization as a mechanism of bypassing conversion phenomena in calcium aluminate cements. Cem Concr Res. 2015;72:54–68. https://doi.org/10.1016/j.cemconres.2015.02.022.

    Article  CAS  Google Scholar 

  10. Idrees M, Ekincioglu O, Sonyal MS. Hydration behavior of calcium aluminate cement mortars with mineral admixtures at different curing temperatures. Constr Build Mater. 2021;285: 122839. https://doi.org/10.1016/j.conbuildmat.2021.122839.

    Article  CAS  Google Scholar 

  11. Jiang C, Yuan H, Lu C, Xu Z, Lu D. The effect of nanoparticles on the properties of calcium aluminate cement pastes at high temperatures. Adv Cem Res. 2018;30(5):195–203. https://doi.org/10.1680/jadcr.17.00039.

    Article  Google Scholar 

  12. Saoût GL, Lothenbach B, Taquet P, Fryda H, Winnefeld F. Hydration of calcium aluminate cement blended with anhydrite. Adv Cem Res. 2018;30(1):24–36. https://doi.org/10.1680/jadcr.17.00045.

    Article  Google Scholar 

  13. Wang Z, Zhao Y, Yang H, Zhou L, Diao G, Liu G, Xu L. Influence of sodium chloride on the hydration of calcium aluminate cement constantly cured at 5, 20 and 40 °C. Adv Cem Res. 2021;33(2):84–95. https://doi.org/10.1680/jadcr.19.0004.

    Article  Google Scholar 

  14. Idrees M, Saeed F, Amin A, Hussain T. Improvement in compressive strength of styrene–butadiene–rubber (SBR) modified mortars by using powder form and nanoparticles. J Build Eng. 2021;44: 102651. https://doi.org/10.1016/j.jobe.2021.102651.

    Article  Google Scholar 

  15. Ohama Y. Handbook of polymer modified concrete and mortars-properties and process technology. NJ: Noyes Publications; 1995. https://www.elsevier.com/books/handbook-of-polymer-modified-concrete-and-mortars/ohama/978-0-8155-1358-2.

  16. Idrees M, Akbar A, Saeed F, Saleem H, Hussain T, Vatin NI. Improvement in durability and mechanical performance of concrete exposed to aggressive environments by using polymer. Materials. 2022;15(11):3751. https://doi.org/10.3390/ma15113751.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Shi C, Zou X, Yang L, Wang P, Niu M. Influence of humidity on the mechanical properties of polymer-modified cement-based repair materials. Constr Build Mater. 2020;261: 119928. https://doi.org/10.1016/j.conbuildmat.2020.119928.

    Article  CAS  Google Scholar 

  18. Ukrainczyk N, Rogina A. Setting time regulation of polymer modified calcium aluminate cement-based materials. In: Proceedings of international conference on materials, tribology, recycling (MATRIB 2010). Croatian Society for Materials and Tribology, Vela Luka, Croatia, June 23–25, 512–520. ISBN 978-953-7040-18-5; 2010.

  19. Sugama T, Mora RN. Acid-modified calcium aluminate and calcium silicate cements. J Mater Sci. 1996;31:6269–78. https://doi.org/10.1007/BF00354449.

    Article  CAS  Google Scholar 

  20. Xu W, Dai JG, Ding Z, Wang Y. Polyphosphate-modified calcium aluminate cement under normal and elevated temperatures: phase evolution, microstructure, and mechanical properties. Ceram Int. 2017;43:15525–36. https://doi.org/10.1016/j.ceramint.2017.08.102.

    Article  CAS  Google Scholar 

  21. Birchall JD, Kendall K, Howard AJ. Cementitious product, European Patent Office: EP0021682; 1981.

  22. Ekincioglu O, Özkul MH, Struble LJ, Patachia S. State of the art of macro-defect-free composites. J Mater Sci. 2018;53:10595–616. https://doi.org/10.1007/s10853-018-2328-y.

    Article  CAS  Google Scholar 

  23. Tan SR, Howard AJ, Birchall JD. Advanced materials from hydraulic cements. R Soc. 1987;322:479–91. https://doi.org/10.1098/rsta.1987.0066.

    Article  CAS  Google Scholar 

  24. Šoukal F, Ptáček P, Másilko J, Opravil T, Havlica J, Drdlová M. High temperature properties of MDF composite based on calcium aluminate cement and polyvinyl alcohol. J Therm Anal Calorim. 2014;115:1245–52. https://doi.org/10.1007/s10973-013-3481-9.

    Article  CAS  Google Scholar 

  25. Engbert A, Gruber S, Plank J. The effect of alginates on the hydration of calcium aluminate cement. Carbohyd Polym. 2020;236: 116038. https://doi.org/10.1016/j.carbpol.2020.116038.

    Article  CAS  Google Scholar 

  26. Wang ZY, Zhao Y, Zhou XL, Diao LG. Effects of hydroxyethyl methyl cellulose ether on the hydration and compressive strength of calcium aluminate cement. J Therm Anal Calorim. 2019;140:545–53. https://doi.org/10.1007/s10973-019-08820-6.

    Article  CAS  Google Scholar 

  27. Akhlaghi O, Menceloglu Y, Akbulut O. Poly(carboxylate ether)-based superplasticizer achieves workability retention in calcium aluminate cement. Sci Rep. 2017;7:41743. https://doi.org/10.1038/srep41743.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ukrainczyk N. Effect of polycarboxylate superplasticizer on properties of calcium aluminate cement mortar. Adv Cem Res. 2015;27(7):388–98. https://doi.org/10.1680/adcr.14.00022.

    Article  Google Scholar 

  29. Koňáková D, Pommer V, Šádková K, Keppert M, Černý R, Vejmelková E. Impact of plasticizers’ types on the performance of calcium aluminate cement. J Mark Res. 2022;20:1512–23. https://doi.org/10.1016/j.jmrt.2022.07.155.

    Article  CAS  Google Scholar 

  30. Yuan Q, Liu Z, Zheng K, Ma C. Chapter 2—Inorganic cementing materials. Civil engineering materials. Elsevier; 2021. p. 17–57. https://doi.org/10.1016/B978-0-12-822865-4.00002-7.

  31. BS EN 1015-2. Methods of test for mortar for masonry. Bulk sampling of mortars and preparation of test mortars. London: British Standards Institution; 1999. https://shop.bsigroup.com/ProductDetail?pid=000000000030151072.

  32. ASTM C185-15a. Standard test method for air content of hydraulic cement mortar. West Conshohocken: ASTM International; 2015. https://doi.org/10.1520/C0185-15A

  33. BS EN 196-1. Methods of testing cement. Determination of strength. London: British Standards Institution; 2016. https://shop.bsigroup.com/ProductDetail?pid=000000000030291447.

  34. ASTM C1702-17. Standard test method for measurement of Heat of hydration of hydraulic cementitious materials using isothermal conduction calorimetry. West Conshohocken: ASTM International; 2017. https://doi.org/10.1520/C1702-17.

  35. ASTM C1585-13. Standard test method for measurement of rate of absorption of water by hydraulic-cement concretes. West Conshohocken: ASTM International; 2013. https://doi.org/10.1520/C1585-13.

  36. Knapen E, Gemert DV. Polymer film formation in cement mortars modified with water-soluble polymers. Cem Concr Compos. 2015;58:23–8.

    Article  CAS  Google Scholar 

  37. Askarinejad S, Rahbar N. Effects of cement-polymer interface properties on mechanical response of fiber-reinforced cement composites. J Nanomech Micromech. 2017;7:04017002.

    Article  Google Scholar 

  38. Saeedikia A, Madani H. Influence of polymer materials on the durability of calcium aluminate cement based mixtures. J Concr Struct Mater. 2018;3(2):24–40.

    Google Scholar 

  39. Saeedikia A, Madani H. The modifying effects of styrene butadiene rubber and styrene acrylic polymers on the properties of cementitious mixtures with calcium aluminate cement. Sharif J Civ Eng. 2018;37.2(2.2):61–71.

    Google Scholar 

  40. Zhang X, Li G, Song Z. Influence of styrene-acrylic copolymer latex on the mechanical properties and microstructure of Portland cement/calcium aluminate cement/gypsum cementitious mortar. Constr Build Mater. 2019;227: 116666.

    Article  CAS  Google Scholar 

  41. BS EN 14647. Calcium aluminate cement. Composition, specifications and conformity criteria. London: British Standards Institution; 2006.

  42. Peng Y, Zhao G, Qi Y, Zeng Q. In-situ assessment of the water-penetration resistance of polymer modified cement mortars by μ-XCT, SEM and EDS. Cem Concr Compos. 2022;114: 103821.

    Article  Google Scholar 

  43. Ma M, Mehdizadeh H, Guo MZ, Ling TC. Effect of direct carbonation routes of basic oxygen furnace slag (BOFS) on strength and hydration of blended cement paste. Constr Build Mater. 2021;304: 124628.

    Article  CAS  Google Scholar 

  44. Do TA, Verdugo D, Tia M, Hoang TT. Effect of volume-to-surface area ratio and heat of hydration on early-age thermal behavior of precast concrete segmental box girders. Case Stud Therm Eng. 2021;28: 101448.

    Article  Google Scholar 

  45. Cherop PT, Kiambi SL, Kosgey EK. Influence of vinyl acetate-ethylene copolymer on early-age ettringite formation and behavior in OPC/CAC/hemihydrate gypsum binder system: A case of higher CAC content than OPC content in the binder. Int J Appl Eng Res. 2017;12(1):11–21.

    Google Scholar 

  46. Engbert A, Plank J. Identification of specific structural motifs in biopolymers that effectively accelerate calcium alumina cement. Ind Eng Chem Res. 2020;59:11930–9.

    Article  CAS  Google Scholar 

  47. Kotera M, Matsuda I, Miyashita K, Adachi N, Tamura H. Hydration process for calcium-aluminate cement within EVA emulsion by SPring-8 synchrotron radiation X-ray diffraction method. J Soc Mater Sci Jpn. 2005;54(7):780–4.

    Article  CAS  Google Scholar 

  48. Zhao H, Yang Y, Shu X, Wang Y, Wu S, Ran Q, Liu J. The binding of calcium ion with different groups of superplasticizers studied by three DFT methods, B3LYP, M06–2X and M06. Comput Mater Sci. 2018;152:43–50.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are highly obliged to Cimsa Cement Company, which supplied calcium aluminate cement and Nippon Gohsei and Organik Kimya for supplying polymers for this study.

Funding

The Higher Education Commissions of Pakistan (HEC) and Turkey (YÖK) have provided the "Pak Turk Researchers' Mobility Grant" [Grant Numbers No. 9-5(Ph-1-MG-11)-PAK TURK/R&D/HEC/2017 (Pakistan), MEV-2017-527(Turkey)]. The research has been conducted under the international collaboration of UET Lahore and ITU Istanbul.

Author information

Authors and Affiliations

Authors

Contributions

There is no conflict of interest among researchers. All authors have contributed almost equally.

Corresponding author

Correspondence to Maria Idrees.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Idrees, M., Ekincioglu, O. & Sonyal, M.S. The hydration behavior of polymer-incorporated calcium aluminate cement mortars at different curing temperatures. J Therm Anal Calorim 147, 13201–13215 (2022). https://doi.org/10.1007/s10973-022-11671-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-022-11671-3

Keywords

Navigation