Skip to main content

Advertisement

Log in

Using thermal analysis as quality control for famotidine polymorph contamination

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

It is well known that undesirable polymorphs in active pharmaceutical ingredients, in any proportion, can cause harm, both financially and to the health of patients. Famotidine (FTD) exhibits three known polymorphs, A, B, and C, which differ in their physicochemical properties. Form B is pharmaceutically preferred because it shows better biopharmaceutical properties. This study used thermal analysis as the main tool in the quality control of polymorphs in FTD batches. The impact on solubility, polymorphic stability, and dissolution profile of tablets was also studied. One batch (called F01), of five characterized, showed contamination with polymorph A. F01 was ~ 2.6 times less soluble than the pure form B batch (called F05) in pH 4.5 phosphate buffer, the recommended US Pharmacopoeia dissolution medium for FTD tablets. Moreover, it was observed that after storage for 3 months (40 ± 2 °C and RH of 75 ± 5%), F05 also showed contamination with form A, representing a risk that should be monitored during the quality control of FTD raw materials and drug formulations. Nevertheless, tablets manufactured with these batches did not show differences in their dissolution profiles, indicating that the amount of form A found in F01 was not sufficient to alter release of the drug from the formulated tablet. Therefore, thermal analysis is efficient in detecting polymorphic contaminations of FTD raw materials, suggesting adequate and fast methods for quality control of drug products and thus, avoiding compromised therapeutic efficacy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Scheme 1.
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Hegedüs B, Bod P, Harsányi K, et al. Comparison of the polymorphic modifications of famotidine. J Pharm Biomed Anal. 1989;7(5):563–9.

    Article  PubMed  Google Scholar 

  2. Islam MS, Narurkar MM. Solubility, stability and ionization behaviour of famotidine. J Pharm Pharmacol. 1993;45:682–6.

    Article  CAS  PubMed  Google Scholar 

  3. Li J, Wang H, Yang B, et al. Control-release microcapsule of famotidine loaded biomimetic synthesized mesoporous silica nanoparticles: controlled release effect and enhanced stomach adhesion in vitro. Mater Sci Eng C. 2016;58:273–7.

    Article  CAS  Google Scholar 

  4. Shafique M, Khan MA, Khan WS, et al. Fabrication, characterization and in vivo evaluation of famotidine loaded solid lipid nanoparticles for boosting oral bioavailability. J Nanomater. 2017;2017:10. https://doi.org/10.1155/2017/7357150.

    Article  CAS  Google Scholar 

  5. Rajendra SN, Vaibhavkumar J, Kamalgiri GA. Formulation and development of famotidine solid dispersion tablets for their solubility enhancement. Indian J Pharm Educ Res. 2019;53:S548–53.

    Article  CAS  Google Scholar 

  6. Fahmy RH, Kassem MA. Enhancement of famotidine dissolution rate through liquisolid tablets formulation: in vitro and in vivo evaluation. Eur J Pharm Biopharm. 2008;69:993–1003.

    Article  CAS  PubMed  Google Scholar 

  7. Patel DJ, Patel JK. Design and evaluation of famotidine mucoadhesive nanoparticles for aspirin induced ulcer treatment. Braz Arch Biol Technol. 2013;56:223–36.

    Article  CAS  Google Scholar 

  8. United States Pharmacopeia National Formulary, 2017:USP 40;NF35.

  9. Favoretto LB, Souza JMO, Bonfilio R, et al. Validação de método espectrofotométrico na região do UVpara quantificação de famotidina em cápsulas. Quim Nova. 2010;33:1585–9.

    Article  CAS  Google Scholar 

  10. Santos OMM, Reis MED, Jacon JT, et al. Polymorphism: an evaluation of the potential risk to the quality of drug products from the Farmácia popular rede Própria. Braz J Pharm Sci. 2014;50:1–24.

    Article  Google Scholar 

  11. Censi R, Di Martino P. Polymorph impact on the bioavailability and stability of poorly soluble drugs. Molecules. 2015;20:18759–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Savjani KT, Gajjar AK, Savjani JK. Drug solubility: importance and techniques. ISRN Pharm. 2012;2012:10. https://doi.org/10.5402/2012/195727.

    Article  CAS  Google Scholar 

  13. Hilfiker R, Berghausen J, Blatter F, et al. Polymorphism. Integrated approach from high-throughput screening to crystallization optimization. J Therm Anal Calorim. 2003;73:429–40.

    Article  CAS  Google Scholar 

  14. Bakar RMA, Nagy ZK, Rielly CD. A combined approach of differential scanning calorimetry and hot-stage microscopy with image analysis in the investigation of sulfathiazole polymorphism. J Therm Anal Calorim. 2010;99:609–19.

    Article  Google Scholar 

  15. Maria TMR, Castro ERA, Ramos SM. Polymorphism and melt crystallisation of racemic betaxolol, a b-adrenergic antagonist drug. J Therm Anal Calorim. 2013;111:2171–8.

    Article  CAS  Google Scholar 

  16. Medina DAV, Ferreira APG, Cavalheiro ETG. Thermal investigation on polymorphism in sodium saccharine. J Therm Anal Calorim. 2014;117:361–7.

    Article  CAS  Google Scholar 

  17. Djellouli F, Dahmani A, Hassani A. Characterization of the polymorph changes in trimethoprim. J Therm Anal Calorim. 2017;130:1585–91.

    Article  CAS  Google Scholar 

  18. Resende RC, Viana OMMS, Freitas JTJ, et al. Analysis of spironolactone polymorphs in active pharmaceutical ingredients and their effect on tablet dissolution profiles. Braz J Pharm Sci. 2016;52:613–21.

    Article  Google Scholar 

  19. Freitas JTJ, Viana OMMS, Bonfilio R, et al. Analysis of polymorphic contamination in meloxicam raw materials and its effects on the physicochemical quality of drug product. Eur J Pharm Sci. 2017;109:347–58.

    Article  Google Scholar 

  20. Testa CG, Prado LD, Costa RN, et al. Challenging identification of polymorphic mixture: polymorphs I, II and III in olanzapine raw materials. Int J Pharm. 2019;556:125–35.

    Article  CAS  PubMed  Google Scholar 

  21. Maximiano FP, Novack KM, Bahia MT, et al. Polymorphic screen and drug–excipient compatibility studies of the antichagasic benznidazole. J Therm Anal Calorim. 2011;106:819–24.

    Article  CAS  Google Scholar 

  22. Veronez IP, Daniel JSP, Garcia JS, Trevisan MG. Characterization and compatibility study of desloratadine. J Therm Anal Calorim. 2014;115:2407–14.

    Article  CAS  Google Scholar 

  23. Giron D. Applications of thermal analysis and coupled techniques in pharmaceutical industry. J Therm Anal Calorim. 2002;68:335–57.

    Article  CAS  Google Scholar 

  24. Wardhana YW, Hardian A, Chaerunisa AY, et al. Kinetic estimation of solid state transition during isothermal and grinding processes among efavirenz polymorphs. Heliyon. 2020;6:e03876.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Golic L, Djinovic K, Florjanic M. Structure of a new crystalline form of famotidine. Acta Crystallogr Sect C: Crys Struct Commun. 1989;45:1381–4.

    Article  Google Scholar 

  26. Shankland K, McBride L, David WIF, et al. Molecular, crystallographic and algorithmic factors in structure determination from powder diffraction data by simulated annealing. J Appl Crystallogr. 2002;35:443–54.

    Article  CAS  Google Scholar 

  27. Hassan MA, Salem MS, Sueliman MS, et al. Characterization of famotidine polymorphic forms. Int J Pharm. 1997;149:227–32.

    Article  CAS  Google Scholar 

  28. Lu J, Wang X-J, Yang X, et al. Polymorphism and crystallization of famotidine. Cryst Growth Des. 2007;7:1590–8.

    Article  CAS  Google Scholar 

  29. Lin SY. An overview of famotidine polimorphs: solidstate characteristics, termodynamics, polymorphic transformation and quality control. Pharm Res. 2014;31:1619–31.

    Article  CAS  PubMed  Google Scholar 

  30. Lin SY, Cheng W-T, Wang S-L. Thermodynamic and kinetic characterization of polymorphic transformation of famotidine during grinding. Int J Pharm. 2006;318:86–91.

    Article  CAS  PubMed  Google Scholar 

  31. Roux MV, Dávalos JZ, Jiménez P. Effect of pressure on the polymorphic forms of famotidine. Thermochim Acta. 2002;394:19–24.

    Article  CAS  Google Scholar 

  32. Cheng W-T, Lin S-Y. Famotidine polymorphic transformation in the grinding process significantly depends on environmental humidity or water content. Int J Pharm. 2008;357:164–8.

    Article  CAS  PubMed  Google Scholar 

  33. Ferenczy GG, Párkányi L, Ángyán JG, et al. Crystal and electronic structure of two polymorphic modifications of famotidine. An experimental and theoretical study. J Mol Struct (Theochem). 2000;503:73–9.

    Article  CAS  Google Scholar 

  34. Saikia B, Sultana N, Kaushik T, et al. Engineering a remedy to improve phase stability of famotidine under physiological pH environments. Cryst Growth Des. 2019;19:6472–81.

    Article  CAS  Google Scholar 

  35. Német Z, Kis GC, Pokol G, Demeter A. Quantitative determination of famotidine polymorphs: X-ray powder diffractometric and Raman spectrometric study. J Pharm Biomed Anal. 2009;49:338–46.

    Article  PubMed  Google Scholar 

  36. Hegedüs B, Bod P, Harsányi K, Péter I, Kálmán A, Párkányi L. Comparison of the polymorphic modifications of famotidine. J Pharm Biomed Anal. 1989;7:563–9.

    Article  PubMed  Google Scholar 

  37. Brasil. Agência Nacional de Vigilância Sanitária. Farmacopeia Brasileira, 6a edição, 2019.

  38. Rowe RC, Sheskey PJ, Quinn ME. Handbook of pharmaceutical excipients. 6th ed. London, Washington: Pharmaceutical Press and American Pharmacists Association; 2009.

    Google Scholar 

  39. Groom CR, Bruno IJ, Lightfoot MP, Ward SC. The cambridge structural database. Acta Cryst Sect B. 2016;72:171–9.

    Article  CAS  Google Scholar 

  40. Oliveira MA, Yoshida MI, Gomes ECL. Análise térmica aplicada a fármacos e formulações farmacêuticas na indústria farmacêutica. Quim Nova. 2011;34:1224–30.

    Article  Google Scholar 

  41. Júlio TA, Garcia JS, Bonfilio R, de Araújo MB, Trevisan MG. Solid-state stability and solubility determination of crystalline forms of moxifloxacin hydrochloride. Int J Pharm Pharm Sci. 2015;7:173–7.

    Google Scholar 

  42. Marosi A, Szalay Z, Béni S, et al. Solution-state NMR spectroscopy of famotidine revisited: spectral assignment, protonation sites, and their structural consequences. Anal Bioanal Chem. 2012;402:1653–66.

    Article  CAS  PubMed  Google Scholar 

  43. Ayres M, Ayres Jr M, Ayres DL, et al. BioEstat 5.0 software: aplicações estatísticas nas áreas das ciências bio-médicas. Ong Mamiraua. 2007;Belém, PA.

  44. Russo MG, Brusau EV, Ellena J, Narda GE. Solid-state supramolecular synthesis based on the N-H..O heterosynthon: an approach to solve the polymorphism problem in famotidine. J Pharm Sci. 2014;103:3754–63.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was partially financed by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brazil (CAPES)—Finance Code 001. The authors acknowledge the Brazilian funding FAPEMIG (APQ-01819-14 and APQ-01931-16), FINEP (Refs. 134/08 and 179/12) for financial support. We also thank CAPES (J.T.J.F.) for the research fellowships.

Author information

Authors and Affiliations

Authors

Contributions

The manuscript was written through contributions of all authors. All authors have given approval to the final version of the manuscript. All authors contributed equally.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1437 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Freitas, J.T.J., Viana, O.M.M.S., Bonfilio, R. et al. Using thermal analysis as quality control for famotidine polymorph contamination. J Therm Anal Calorim 147, 13405–13412 (2022). https://doi.org/10.1007/s10973-022-11667-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-022-11667-z

Keyword

Navigation