Skip to main content
Log in

A critical review on the effect of morphology, stability, and thermophysical properties of graphene nanoparticles in nanolubricants and nanofluids

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

This paper presents a blueprint for major exploration advances in graphene-based nanolubricants and nanofluids achieved over the last few years. Graphene is being studied worldwide as a coolant and lubricant additive due to its excellent thermophysical and tribological properties. With this in mind, a variety of synthesis methods, characterization techniques, and methods are highlighted for studying tested and developed properties. In addition to that, factors influencing the thermal conductivity, viscosity, stability, and applications of different nanoparticles are described in detail. Improvement of viscosity, antiwear, and thermal conductivity behavior of graphene-based nanofluids plays a vital role, but not many mechanisms have been introduced. Graphene nanoparticles are most effective and promising the better heat transfer rate among other mostly used nanoparticles in the cooling and lubricant sector. It increases the effectiveness almost two times at higher concentration suspended in water. This complete overview, along with key comments and recommendations, may relate to future headings in this audit area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Abbreviations

AFM:

Atomic force microscopy

AW:

Antiwear

BF:

Base fluid

CHF:

Critical heat flux

CTAB:

Cetyltri-methyl ammonium bromide

CVD:

Chemical vapor deposition

CNT:

Carbon nanotubes

CONC:

Concentration

DMF:

Dimethyl form amide

DW:

Distilled water

EP:

Extreme pressure

EG:

Ethylene glycol

F-HEG:

Functionalized graphene

GE:

Graphene

GO:

Graphene oxide

GONs:

Graphene oxide nanosheets

GNPs:

Graphene nanoplatelets

GQD:

Graphene quantum dot

HEG:

Hydrogen-induced exfoliated graphene

HOPG:

Highly oriented pyrolytic graphite

HRTEM:

High-resolution transmission electron micrograph

LP:

Liquid paraffin

MoDtc:

Molybdenum dithio-carbamate

MWCNT:

Multi-walled carbon nanotubes

NDG:

Nitrogen-doped graphene

NPs:

Nanoparticles

OEM:

Original equipment manufacturer

OHTC:

Overall heat transfer coefficient

PS:

Particle size

PM:

Preparation method

PMMA:

Polymethyl methacrylate

PG :

Propyl glycol

RGO :

Reduced graphene oxide

SDBS:

Sodium dodecyl benzene sulfonate

SDS:

Sodium dodecyl sulfate

SFTs :

Surfactants

SM :

Synthesis method

SEM:

Scanning electron microscopy

TEOS:

Tetraethyl orthosilicate

TEM:

Transmission electron microscopy

TEOS :

Tetraethyl orthosilicate

THW:

Transient heat ray

h:

Convective heat transfer coefficient, w m2K1

k:

Thermal conductivity, W m1K1

Nu:

Nusselt number

Re:

Renolds number

Pr:

Prandtl number

W:

Watt

M:

Meter

k:

Kelvin

TPa:

Tera pascal

GPa:

Giga pascal

Ω:

Ohm

μm:

Micrometer

cm:

Centimeter

m:

Meter

References

  1. UN data. Industrial Commodity Statistics Database, 23 Jan; 2013; 〈http://data.un.org/Data.aspx?q¼OtherþAsia&d¼EDATA&f¼cmID%3aLU%3byr%3a2010&c¼2,5,6,7,8&s¼_crEngNameOrderBy:asc,_enID:asc,yr:desc&v¼1〉.

  2. Eastman JA, et al. Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles. Appl Phys Lett. 2001;78(6):718–20.

    Article  CAS  Google Scholar 

  3. Yu W, et al. Review and comparison of nanofluid thermal conductivity and heat transfer enhancements. Heat Transf Eng. 2008;29(5):432–60.

    Article  CAS  Google Scholar 

  4. Kosarieh S, et al. The effect of MoDTC-type friction modifier on the wear performance of a hydrogenated DLC coating. Wear. 2013;302(1–2):890–8.

    Article  CAS  Google Scholar 

  5. Haque T, Morina A, Neville A. Influence of friction modifier and antiwear additives on the tribological performance of a non-hydrogenated DLC coating. Surf Coat Technol. 2010;204(24):4001–11.

    Article  CAS  Google Scholar 

  6. Rudenko P, Bandyopadhyay A. Talc as friction reducing additive to lubricating oil. Appl Surf Sci. 2013;276:383–9.

    Article  CAS  Google Scholar 

  7. Hernández Battez A, et al. Wear prevention behaviour of nanoparticle suspension under extreme pressure conditions. Wear. 2007;263(7–12):1568–74.

    Article  Google Scholar 

  8. Nassar AM, et al. Synthesis and utilization of non-metallic detergent/dispersant and antioxidant additives for lubricating engine oil. Tribol Int. 2016;93:297–305.

    Article  CAS  Google Scholar 

  9. Rasheed AK, et al. Study of graphene nanolubricant using thermo gravimetric analysis. J Mater Res. 2015;31(13):1939–46.

  10. Wilson RW, Lyon SB. 2.26—Corrosion in lubricants/fuels. In: T Jar (ed). Shreir's corrosion. Oxford: Elsevier; 2010. pp 1299–1307.

  11. Hafiz AA, Khidr TT. Hexa-triethanolamine oleate esters as pour point depressant for waxy crude oils. J Pet Sci Eng. 2007;56(4):296–302.

    Article  CAS  Google Scholar 

  12. Taraneh JB, et al. Effect of wax inhibitors on pour point and rheological properties of Iranian waxy crude oil. Fuel Process Technol. 2008;89(10):973–7.

    Article  CAS  Google Scholar 

  13. Mohamad SA, et al. Investigation of polyacrylates copolymers as lube oil viscosity index improvers. J Pet Sci Eng. 2012;100:173–7.

    Article  CAS  Google Scholar 

  14. Vakili-Nezhaad G, Dorany A. Effect of single-walled carbon nanotube on the viscosity of lubricants. Energy Procedia. 2012;14:512–7.

    Article  CAS  Google Scholar 

  15. Li J, et al. Tribological studies on a novel borate ester containing benzothiazol-2-yl and disulfide groups as multifunctional additive. Tribol Int. 2010;43(5–6):1048–53.

    Article  CAS  Google Scholar 

  16. Martin-Gallego M, et al. Thermal conductivity of carbon nanotubes and graphene in epoxy nanofluids and nanocomposites. Nanoscale Res Lett. 2011;6(1):610.

    Article  Google Scholar 

  17. Cai W, et al. Thermal transport in suspended and supported monolayer graphene grown by chemical vapour deposition. Nano Lett. 2010;10(5):1645–51.

    Article  CAS  Google Scholar 

  18. Liu Z, et al. In-plane heterostructures of graphene and hexagonal boron nitride with controlled domain sizes. Nat Nano. 2013;8(2):119–24.

    Article  CAS  Google Scholar 

  19. Sun Z, et al. Growth of graphene from solid carbon sources. Nature. 2010;468(7323):549–52.

    Article  CAS  Google Scholar 

  20. Hernández Battez A, et al. CuO, ZrO2 and ZnO nanoparticles as antiwear additive in oil lubricants. Wear. 2008;265(3–4):422–8.

    Article  Google Scholar 

  21. Hernández Battez A, et al. Friction reduction properties of a CuO nanolubricant used as lubricant for a NiCrBSi coating. Wear. 2010;268(1–2):325–8.

    Article  Google Scholar 

  22. Yu H-l, et al. Tribological properties and lubricating mechanisms of Cu nanoparticles in lubricant. Trans Nonferrous Metal Soc China. 2008;18(3):636–41.

    Article  CAS  Google Scholar 

  23. Nomède-Martyr N, et al. Tribological properties of fluorinated nanocarbons with different shape factors. J Fluor Chem. 2012;144:10–6.

    Article  Google Scholar 

  24. Cursaru D-L, et al. The efficiency of Co-based single-wall carbon nanotubes (SWNTs) as an AW/EP additive for mineral base oils. Wear. 2012;290–291:133–9.

    Article  Google Scholar 

  25. Grierson DS, Carpick RW. Nanotribology of carbon-based materials. Nano Today. 2007;2(5):12–21.

    Article  Google Scholar 

  26. Das SK, et al. Nanofluids: science and technology. Hoboken: Wiley-Interscience; 2007. p. 416.

    Book  Google Scholar 

  27. Martin JM, Ohmae N, editors. Nanolubricants. West Sussex, England: Wiley; 2008.

    Google Scholar 

  28. Das SK, et al. Temperature dependence of thermal conductivity enhancement for nanofluids. J Heat Transf. 2003;125:567–74.

    Article  CAS  Google Scholar 

  29. Ma S, et al. Anti-wear and friction performance of ZrO2 nanoparticles as lubricant additive. Particuology. 2010;8(5):468–72.

    Article  CAS  Google Scholar 

  30. Lahouij I, et al. IF-MoS2 based lubricants: influence of size, shape and crystal structure. Wear. 2012;296(1–2):558–67.

    Article  CAS  Google Scholar 

  31. Fan J, Wang L. Review of heat conduction in nanofluids. J Heat Transf. 2011;133(4):040801–14.

    Article  Google Scholar 

  32. Daungthongsuk W, Wongwises S. A critical review of convective heat transfer of nanofluids. Renew Sustain Energy Rev. 2007;11(5):797–817.

    Article  CAS  Google Scholar 

  33. Kakaç S, Pramuanjaroenkij A. Review of convective heat transfer enhancement with nanofluids. Int J Heat Mass Transf. 2009;52(13–14):3187–96.

    Article  Google Scholar 

  34. Haddad Z, et al. A review on natural convective heat transfer of nanofluids. Renew Sustain Energy Rev. 2012;16(7):5363–78.

    Article  CAS  Google Scholar 

  35. Mohammed HA, et al. Convective heat transfer and fluid flow study over a step using nanofluids: a review. Renew Sustain Energy Rev. 2011;15(6):2921–39.

    Article  CAS  Google Scholar 

  36. Murshed SMS, et al. A review of boiling and convective heat transfer with nanofluids. Renew Sustain Energy Rev. 2011;15(5):2342–54.

    Article  CAS  Google Scholar 

  37. Taylor RA, Phelan PE. Pool boiling of nanofluids: comprehensive review of existing data and limited new data. Int J Heat Mass Transf. 2009;52(23–24):5339–47.

    Article  CAS  Google Scholar 

  38. Eapen J, Li J, Yip S. Beyond the Maxwell limit: thermal conduction in nanofluids with percolating fluid structures. Phys Rev E. 2007;76(6):062501.

    Article  Google Scholar 

  39. Chandrasekar M, Suresh S, Senthilkumar T. Mechanisms proposed through experimental investigations on thermo physical properties and forced convective heat transfer characteristics of various nanofluids—a review. Renew Sustain Energy Rev. 2012;16(6):3917–38.

    Article  CAS  Google Scholar 

  40. Rashmi W, et al. Preparation, thermo-physical properties and heat transfer enhancement of nanofluids. Mater Res Express. 2014;1(3):032001.

    Article  CAS  Google Scholar 

  41. Murshed SMS, Leong KC, Yang C. Thermophysical and electro kinetic properties of nanofluids—a critical review. Appl Therm Eng. 2008;28(17–18):2109–25.

    Article  CAS  Google Scholar 

  42. Özerinç S, Kakaç S, Yazıcıoğlu A. Enhanced thermal conductivity of nano-fluids: a state-of-the-art review. Microfluid Nanofluidics. 2010;8(2):145–70.

    Article  Google Scholar 

  43. Thomas S, Choondal BPS. A review of experimental investigations on thermal phenomena in nanofluids. Nanoscale Res Lett. 2011;6:377. https://doi.org/10.1186/1556-276X-6-377

  44. Yu W, Xie H. A review on nanofluids: preparation, stability mechanisms, and applications. J Nanomater. 2012;2012:435873.

    Article  Google Scholar 

  45. Nkurikiyimfura I, Wang Y, Pan Z. Heat transfer enhancement by magnetic nanofluids—a review. Renew Sustain Energy Rev. 2013;21:548–61.

    Article  CAS  Google Scholar 

  46. Salman BH, et al. Characteristics of heat transfer and fluid flow in micro tube and micro channel using conventional fluids and nanofluids: a review. Renew Sustain Energy Rev. 2013;28:848–80.

    Article  CAS  Google Scholar 

  47. Rao Y. Nanofluids: stability, phase diagram, rheology and applications. Particuology. 2010;8(6):549–55.

    Article  CAS  Google Scholar 

  48. Taha-Tijerina J, et al. Electrically insulating thermal nano-oils using 2D fillers. ACS Nano. 2012;6(2):1214–20.

    Article  CAS  Google Scholar 

  49. Baby TT, Ramaprabhu S. Investigation of thermal and electrical conductivity of graphene based nanofluids. J Appl Phys. 2010;108(12):124308–16.

    Article  Google Scholar 

  50. Hadadian M, Goharshadi EK, Youssefi A. Electrical conductivity, thermal conductivity, and rheological properties of graphene oxide-based nanofluids. J Nanopart Res. 2014;16(12):1–17.

    Article  CAS  Google Scholar 

  51. Mehrali M, et al. Experimental and numerical investigation of the effective electrical conductivity of nitrogen-doped graphene nanofluids. J Nano-particle Res. 2015;17(6):1–17.

    Google Scholar 

  52. Wen D, et al. Review of nanofluids for heat transfer applications. Particuology. 2009;7(2):141–50.

    Article  CAS  Google Scholar 

  53. Yu W et al. Review and assessment of nanofluid technology for transportation and other applications. Medium: ED; 2007.

  54. Ahmed HE, Mohammed HA, Yusoff MZ. An overview on heat transfer augmentation using vortex generators and nanofluids: approaches and applications. Renew Sustain Energy Rev. 2012;16(8):5951–93.

    Article  CAS  Google Scholar 

  55. Huminic G, Huminic A. Application of nanofluids in heat exchangers: a review. Renew Sustainable Energy Rev. 2012;16(8):5625–38.

    Article  CAS  Google Scholar 

  56. Mahian O, et al. A review of the applications of nanofluids in solar energy. Int J Heat Mass Transf. 2013;57(2):582–94.

    Article  CAS  Google Scholar 

  57. Paul G, et al. Techniques for measuring the thermal conductivity of nano-fluids: a review. Renew Sustain Energy Rev. 2010;14(7):1913–24.

    Article  CAS  Google Scholar 

  58. Saidur R, et al. A review on the performance of nanoparticles suspended with refrigerants and lubricating oils in refrigeration systems. Renew Sustain Energy Rev. 2011;15(1):310–23.

    Article  CAS  Google Scholar 

  59. Cheng L, Liu L. Boiling and two-phase flow phenomena of refrigerant-based nanofluids: fundamentals, applications and challenges. Int J Refrig. 2013;36(2):421–46.

    Article  CAS  Google Scholar 

  60. Eswaraiah V, Sankaranarayanan V, Ramaprabhu S. Graphene-based engine oil nanofluids for tribological applications. ACS Appl Mater Interfaces. 2011;3(11):4221–7.

    Article  CAS  Google Scholar 

  61. Senatore A, et al. Graphene oxide nanosheets as effective friction modifier for oil lubricant: materials, methods, and tribological results. ISRN Tribol. 2013;2013:9.

    Article  Google Scholar 

  62. Geim AK, Novoselov KS. The rise of graphene. Nat Mater. 2007;6(3):183–91.

    Article  CAS  Google Scholar 

  63. Chae HK, et al. A route to high surface area, porosity and inclusion of large molecules in crystals. Nature. 2004;427(6974):523–7.

    Article  CAS  Google Scholar 

  64. Balandin AA, et al. Superior thermal conductivity of single-layer graphene. Nano Lett. 2008;8(3):902–7.

    Article  CAS  Google Scholar 

  65. Berman D, et al. Extraordinary macroscale wear resistance of one atom thick graphene layer. Adv Funct Mater. 2014;24(42):6640–6.

    Article  CAS  Google Scholar 

  66. Berman D, Erdemir A, Sumant AV. Graphene: a new emerging lubricant. Mater Today. 2014;17(1):31–42.

    Article  CAS  Google Scholar 

  67. Taha-Tijerina J, et al. Multifunctional nanofluids with 2D nanosheets for thermal and tribological management. Wear. 2013;302(1–2):1241–8.

    Article  CAS  Google Scholar 

  68. Freitag M, et al. Energy dissipation in graphene field-effect transistors. Nano Lett. 2009;9(5):1883–8.

    Article  CAS  Google Scholar 

  69. Stankovich S, et al. Graphene-based composite materials. Nature. 2006;442(7100):282–6.

    Article  CAS  Google Scholar 

  70. Lee C, et al. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science. 2008;321(5887):385–8.

    Article  CAS  Google Scholar 

  71. Nair RR, et al. Fine structure constant defines visual transparency of graphene. Science. 2008;320(5881):1308.

    Article  CAS  Google Scholar 

  72. Tombros N, et al. Electronic spin transport and spin precession in single graphene layers at room temperature. Nature. 2007;448(7153):571–4.

    Article  CAS  Google Scholar 

  73. Novoselov KS, et al. Electric field effect in atomically thin carbon films. Science. 2004;306(5696):666–9.

    Article  CAS  Google Scholar 

  74. Dragoman M, Dragoman D. Graphene-based quantum electronics. Prog Quantum Electron. 2009;33(6):165–214.

    Article  CAS  Google Scholar 

  75. Miao F, et al. Phase-coherent transport in graphene quantum billiards. Science. 2007;317(5844):1530–3.

    Article  CAS  Google Scholar 

  76. Du X, et al. Approaching ballistic transport in suspended graphene. Nat Nano. 2008;3(8):491–5.

    Article  CAS  Google Scholar 

  77. Gilje S, et al. A chemical route to graphene for device applications. Nano Lett. 2007;7(11):3394–8.

    Article  CAS  Google Scholar 

  78. Mattevi C, Kim H, Chhowalla M. A review of chemical vapour deposition of graphene on copper. J Mater Chem. 2011;21(10):3324–34.

    Article  CAS  Google Scholar 

  79. Rao CNR, et al. A study of the synthetic methods and properties of graphenes. Sci Technol Adv Mater. 2010;11(5):054502.

    Article  CAS  Google Scholar 

  80. Texter J. Graphene dispersions. Curr Opin Colloid Interface Sci. 2014;19(2):163–74.

    Article  CAS  Google Scholar 

  81. Sharma AK, Tiwari AK, Dixit AR. Rheological behaviour of nanofluids: a review. Renew Sustain Energy Rev. 2016;53:779–91.

    Article  CAS  Google Scholar 

  82. Stankovich S, et al. Stable aqueous dispersions of graphitic nanoplatelets via the reduction of exfoliated graphite oxide in the presence of poly(sodium 4-styrenesulfonate). J Mater Chem. 2006;16(2):155–8.

    Article  CAS  Google Scholar 

  83. Hernandez Y, et al. High-yield production of graphene by liquid-phase exfoliation of graphite. Nat Nano. 2008;3(9):563–8.

    Article  CAS  Google Scholar 

  84. Kosynkin DV, et al. Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons. Nature. 2009;458(7240):872–6.

    Article  CAS  Google Scholar 

  85. Choucair M, Thordarson P, Stride JA. Gram-scale production of graphene based on solvothermal synthesis and sonication. Nat Nano. 2009;4(1):30–3.

    Article  CAS  Google Scholar 

  86. Xie G, et al. A bond-order theory on the phonon scattering by vacancies in two-dimensional materials. Sci Rep. 2014;4:5085.

    Article  Google Scholar 

  87. Mingzheng Z, et al. Analysis of factors influencing thermal conductivity and viscosity in different kinds of surfactant solutions. Exp Therm Fluid Sci. 2012;36:22–9.

    Article  Google Scholar 

  88. Uddin ME, et al. Effects of various surfactants on the dispersion stability and electrical conductivity of surface modified graphene. J Alloys Compd. 2013;562:134–42.

    Article  CAS  Google Scholar 

  89. Kuila T, et al. Chemical functionalization of graphene and its applications. Prog Mater Sci. 2012;57(7):1061–105.

    Article  CAS  Google Scholar 

  90. Li X, et al. Effect of surface modification on the stability and thermal conductivity of water-based SiO2-coated graphene nanofluid. Thermochim Acta. 2014;595:6–10.

    Article  CAS  Google Scholar 

  91. Baby TT, Ramaprabhu S. Synthesis and nanofluid application of silver nanoparticles decorated graphene. J Mater Chem. 2011;21(26):9702–9.

    Article  CAS  Google Scholar 

  92. Baby TT, Sundara R. Synthesis and transport properties of metal oxide decorated graphene dispersed nanofluids. J Phys Chem C. 2011;115(17):8527–33.

    Article  CAS  Google Scholar 

  93. Bai G, et al. Preparation of a highly effective lubricating oil additiveceria/graphene composite. RSC Adv. 2014;4(87):47096–105.

    Article  CAS  Google Scholar 

  94. Ferrari AC, et al. Raman spectrum of graphene and graphene layers. Phys Rev Lett. 2006;97(18): 187401.

    Article  CAS  Google Scholar 

  95. Lahiri J, et al. An extended defect in graphene as a metallic wire. Nat Nano. 2010;5(5):326–9.

    Article  CAS  Google Scholar 

  96. Yu W, et al. Significant thermal conductivity enhancement for nanofluids containing graphene nanosheets. Phys Lett A. 2011;375(10):1323–8.

    Article  CAS  Google Scholar 

  97. Ding Y, et al. Heat transfer of aqueous suspensions of carbon nanotubes (CNT nanofluids). Int J Heat Mass Transf. 2006;49(1–2):240–50.

    Article  CAS  Google Scholar 

  98. Walvekar R, Faris IA, Khalid M. Thermal conductivity of carbon nanotube nanofluid experimental and theoretical study. Heat Transf Asian Res. 2012;41(2):145–63.

    Article  Google Scholar 

  99. Choi SUS, et al. Anomalous thermal conductivity enhancement in nanotube suspensions. Appl Phys Lett. 2001;79(14):2252–4.

    Article  CAS  Google Scholar 

  100. Patel HE, et al. Thermal conductivities of naked and monolayer protected metal nanoparticle based nanofluids: manifestation of anomalous enhancement and chemical effects. Appl Phys Lett. 2003;83(14):2931–3.

    Article  CAS  Google Scholar 

  101. Shahriari E, Mat Y, WM, Zamiri R. The effect of nanoparticle size on thermal diffusivity of gold nano-fluid measured using thermal lens technique. J Eur Opt Soc. 2013;8. https://doi.org/10.2971/jeos.2013.13026

  102. Lotfi H, Shafii MB. Boiling heat transfer on a high temperature silver sphere in nanofluid. Int J Therm Sci. 2009;48(12):2215–20.

    Article  CAS  Google Scholar 

  103. Li CH, Peterson GP. The effect of particle size on the effective thermal conductivity of Al2O3-water nanofluids. J Appl Phys. 2007;101(4):044312.

    Article  Google Scholar 

  104. Kim P, et al. Thermal transport measurements of individual multiwalled nanotubes. Phys Rev Lett. 2001;87(21):215502.

    Article  CAS  Google Scholar 

  105. Gupta SS, et al. Thermal conductivity enhancement of nanofluids containing graphene nanosheets. J Appl Phys. 2011;110(8):084302–6.

    Article  Google Scholar 

  106. Anoop KB, Sundararajan T, Das SK. Effect of particle size on the convective heat transfer in nanofluid in the developing region. Int J Heat Mass Transf. 2009;52(9–10):2189–95.

    Article  CAS  Google Scholar 

  107. Beck M, et al. The effect of particle size on the thermal conductivity of alumina nanofluids. J Nanopart Res. 2009;11(5):1129–36.

    Article  CAS  Google Scholar 

  108. Jeong J, et al. Particle shape effect on the viscosity and thermal conductivity of ZnO nanofluids. Int J Refrig Int Du Froid 2013;36:2233–41.

  109. Tsai T-H, et al. Effect of viscosity of base fluid on thermal conductivity of nanofluids. Appl Phys Lett. 2008;93(23):233121–3.

    Article  Google Scholar 

  110. Ruan B, Jacobi A. Ultra sonication effects on thermal and rheological properties of carbon nanotube suspensions. Nanoscale Res Lett. 2012;7(1):127.

    Article  Google Scholar 

  111. Mehrali M, et al. Investigation of thermal conductivity and rheological properties of nanofluids containing graphene nanoplatelets. Nanoscale Res Lett. 2014;9(1):15.

    Article  Google Scholar 

  112. Wang X, Xu X, Choi SUS. Thermal conductivity of nanoparticle fluid mixture. J Thermophys Heat Transf. 1999;13(4):474–80.

    Article  CAS  Google Scholar 

  113. Dhanapal K, Mohan Raman R, Kamatchi GK. Role of method of synthesis on the size of fakes, dispersion stability and thermophysical properties of aqua based reduced graphene oxide nanofluids. J Therm Anal Calorimetry. 2021;144:233–43.

    Article  CAS  Google Scholar 

  114. Murshed SMS, Leong KC, Yang C. Enhanced thermal conductivity of TiO2– water based nanofluids. Int J Therm Sci. 2005;44(4):367–73.

    Article  CAS  Google Scholar 

  115. Zhang X, Gu H, Fujii M. Effective thermal conductivity and thermal diffusivity of nanofluids containing spherical and cylindrical nanoparticles. Exp Therm Fluid Sci. 2007;31(6):593–9.

    Article  CAS  Google Scholar 

  116. Zhu D, et al. Dispersion behavior and thermal conductivity characteristics of Al2O3-H2O nanofluids. Curr Appl Phys. 2009;9(1):131–9.

    Article  Google Scholar 

  117. Jiang W, Ding G, Peng H. Measurement and model on thermal conductivities of carbon nanotube nanorefrigerants. Int J Therm Sci. 2009;48(6):1108–15.

    Article  CAS  Google Scholar 

  118. Sherif II, Mahmoud NS. Measurements of thermal conduction and surface finish by the thermal comparator. J Appl Phys. 1966;37(5):2193–4.

    Article  CAS  Google Scholar 

  119. Yu W, Xie H, Bao D. Enhanced thermal conductivities of nanofluids containing graphene oxide nanosheets. Nanotechnology. 2010;21(5):055705.

    Article  Google Scholar 

  120. Yu W, Xie H, Chen W. Experimental investigation on thermal conductivity of nanofluids containing graphene oxide nanosheets. J Appl Phys. 2010;107(9):094317–26.

    Article  Google Scholar 

  121. Sridhara V, Satapathy LN. Al2O3-based nanofluids: a review. Nanoscale Res Lett. 2011;6(1):456.

    Article  Google Scholar 

  122. Sun Z, et al. High-yield exfoliation of graphite in acrylate polymers: a stable few-layer graphene nanofluid with enhanced thermal conductivity. Carbon. 2013;64:288–94.

    Article  CAS  Google Scholar 

  123. Ma W, et al. Silicone based nanofluids containing functionalized graphene nanosheets. Colloids Surf A Physicochem Eng Asp. 2013;431:120–6.

    Article  CAS  Google Scholar 

  124. Ghozatloo A, Shariaty-Niasar M, Rashidi AM. Preparation of nanofluids from functionalized graphene by new alkaline method and study on the thermal conductivity and stability. Int Commun Heat Mass Transf. 2013;42:89–94.

    Article  CAS  Google Scholar 

  125. Fan Z, et al. Effects of heat treatment on the thermal properties of highly nanoporous graphene aerogels using the infrared microscopy technique. Int J Heat Mass Transf. 2014;76:122–7.

    Article  CAS  Google Scholar 

  126. Hajjar Z, Am R, Ghozatloo A. Enhanced thermal conductivities of graphene oxide nanofluids. Int Commun Heat Mass Transf. 2014;57:128–31.

    Article  CAS  Google Scholar 

  127. Park SS, Kim NJ. Influence of the oxidation treatment and the average particle diameter of graphene for thermal conductivity enhancement. J Ind Eng Chem. 2014;20(4):1911–5.

    Article  CAS  Google Scholar 

  128. Mohd Zubir MN, et al. Highly dispersed reduced graphene oxide and its hybrid complexes as effective additives for improving thermophysical property of heat transfer fluid. Int J Heat Mass Transf. 2015;87:284–94.

    Article  CAS  Google Scholar 

  129. Dhar P, et al. The role of percolation and sheet dynamics during heat conduction in poly-dispersed graphene nanofluids. Appl Phys Lett. 2013;102(16):163114–5.

    Article  Google Scholar 

  130. Moghaddam MB, et al. Preparation, characterization, and rheological properties of graphene–glycerol nanofluids. Chem Eng J. 2013;231:365–72.

    Article  CAS  Google Scholar 

  131. Mintsa HA, et al. New temperature dependent thermal conductivity data for water-based nanofluids. Int J Therm Sci. 2009;48(2):363–71.

    Article  CAS  Google Scholar 

  132. Buongiorno J, et al. A benchmark study on the thermal conductivity of nanofluids. J Appl Phys. 2009;106(9):094312–4.

    Article  Google Scholar 

  133. Chen L, et al. Nanofluids containing carbon nanotubes treated by mechanochemical reaction. Thermochim Acta. 2008;477(1–2):21–4.

    Article  CAS  Google Scholar 

  134. Timofeeva EV, et al. Thermal conductivity and particle agglomeration in alumina nanofluids: experiment and theory. Phys Rev E. 2007;76(6):061203.

    Article  Google Scholar 

  135. Yang B, Han ZH. Temperature-dependent thermal conductivity of nanorod-based nanofluids. Appl Phys Lett. 2006;89(8):083111.

    Article  Google Scholar 

  136. Wang F, et al. Surfactant-free ionic liquid-based nanofluids with remarkable thermal conductivity enhancement at very low loading of graphene. Nanoscale Res Lett. 2012;7(1):314.

    Article  Google Scholar 

  137. Kim J, et al. Direct exfoliation and dispersion of two-dimensional materials in pure water via temperature control. Nat Commun. 2015;6:8294. https://doi.org/10.1038/ncomms9294

  138. Zawrah MF, et al. Stability and electrical conductivity of water-based Al2O3 nanofluids for different applications. HBRC J. 2015;12:227–234.

  139. Kotov NA, Dékány I, Fendler JH. Ultrathin graphite oxide–polyelectrolyte composites prepared by self-assembly: transition between conductive and non-conductive states. Adv Mater. 1996;8(8):637–41.

    Article  CAS  Google Scholar 

  140. Cassagneau T, Guérin F, Fendler JH. Preparation and characterization of ultrathin films layer-by-layer self-assembled from graphite oxide nanoplatelets and polymers. Langmuir. 2000;16(18):7318–24.

    Article  CAS  Google Scholar 

  141. Murshed SMS, de Castro CAN, Lourenço MJV. Effect of surfactant and nano-particle clustering on thermal conductivity of aqueous nanofluids. J Nano-fluids. 2012;1(2):175–9.

    CAS  Google Scholar 

  142. Rashmi W, et al. Stability and thermal conductivity enhancement of carbon nanotube nanofluid using gum arabic. J Exp Nanosci, 2010;1–13.

  143. Sadri R, et al. An experimental study on thermal conductivity and viscosity of nanofluids containing carbon nanotubes. Nanoscale Res Lett. 2014;9(1):151.

    Article  Google Scholar 

  144. Jyothirmayee Aravind SS, Ramaprabhu S. Surfactant free graphene nanosheets based nanofluids by in-situ reduction of alkaline graphite oxide suspensions. J Appl Phys. 2011;110(12):124326.

    Article  Google Scholar 

  145. Li D, et al. Processable aqueous dispersions of graphene nanosheets. Nat Nano. 2008;3(2):101–5.

    Article  CAS  Google Scholar 

  146. Kim JM, Kim T, Ahn HS. Experimental study of transient boiling characteristics on three-dimensional reduced graphene oxide networks. Exp Therm Fluid Sci. 2014;59:51–5.

    Article  CAS  Google Scholar 

  147. Zhang L, et al. Frictional dependence of graphene and carbon nanotube in diamond-like carbon/ionic liquids hybrid films in vacuum. Carbon. 2014;80:734–45.

    Article  CAS  Google Scholar 

  148. Ijam A, et al. A glycerol–water-based nanofluid containing graphene oxide nanosheets. J Mater Sci. 2014;49(17):5934–44.

    Article  CAS  Google Scholar 

  149. Tharayil T, Asirvatham LG, Ravindran V, Wongwises S. Thermal performance of miniature loop heat pipe with graphene water nanofluid. Int J Heat Mass Trans. 2016;93:957–68. https://doi.org/10.1016/j.ijheatmasstransfer.2015.11.011.

    Article  CAS  Google Scholar 

  150. Tharayil T, Asirvatham LG, Dau MJ, Wongwises S. Entropy generation analysis of a miniature loop heat pipe with graphene water nanofluid: thermodynamics model and experimental study. Int J Heat Mass Trans. 2017;106:407–21. https://doi.org/10.1016/j.ijheatmasstransfer.2016.08.035.

    Article  CAS  Google Scholar 

  151. Mehrali M, Sadeghinezhad E, Azizian R, Akhiani AR, Latibari ST, Mehrali M, Metselaar HSC. Effect of nitrogen-doped graphene nanofluid on the thermal performance of the grooved copper heat pipe. Energy Convers Manag. 2016;118:459–73. https://doi.org/10.1016/j.enconman.2016.04.028.

    Article  CAS  Google Scholar 

  152. Sadeghinezhad E, Mehrali M, Rosen MA, Akhiani AR, Latibari ST, Mehrali M, Metselaar HSC. Experimental investigation of the effect of graphene nanofluids on heat pipe thermal performance. Appl Therm Eng. 2016;100:775–87. https://doi.org/10.1016/j.applthermaleng.2016.02.071.

    Article  CAS  Google Scholar 

  153. Su X, Zhang M, Han W, Guo X. Experimental study on the heat transfer performance of an oscillating heat pipe with self-rewetting nanofluid. Int J Heat Mass Trans. 2016;100:378–85. https://doi.org/10.1016/j.ijheatmasstransfer.2016.04.094.

    Article  CAS  Google Scholar 

  154. Yarmand H, Gharehkhani S, Shirazi SFS, Amiri A, Alehashem MS, Dahari M, Kazi S. Experimental investigation of thermo-physical properties, convective heat transfer and pressure drop of functionalized graphene Nano platelets aqueous nanofluid in a square heated pipe. Energy Convers Manag. 2016;114:38–49. https://doi.org/10.1016/j.enconman.2016.02.008.

    Article  CAS  Google Scholar 

  155. Kim KM, Bang IC. Effects of graphene oxide nanofluids on heat pipe performance and capillary limits. Int J Therm Sci. 2016;100:346–56.

    Article  CAS  Google Scholar 

  156. Amiri A, Shanbedi M, Chew B, Kazi S, Solangi K. Toward improved engine performance with crumpled nitrogen-doped graphene based water ethylene glycol coolant. Chem Eng J. 2016;289:583–95. https://doi.org/10.1016/j.cej.2015.12.083.

    Article  CAS  Google Scholar 

  157. Selvam C, Lal DM, Harish S. Enhanced heat transfer performance of an automobile radiator with graphene based suspensions. Appl Therm Eng. 2017;123:50–60. https://doi.org/10.1016/applthermaleng.2017.05.076.

    Article  CAS  Google Scholar 

  158. Selvam C, Raja RS, Lal DM, Harish S. Overall heat transfer coeffcient improvement of an automobile radiator with graphene based suspensions. Int J Heat Mass Trans. 2017;115:580–8. https://doi.org/10.1016/j.ijheatmasstransfer.2017.08.071.

    Article  CAS  Google Scholar 

  159. Ghozatloo A, Rashidi A, Shariaty-Niassar M. Convective heat transfer enhancement of graphene nanofluids in shell and tube heat exchanger. Exp Therm Fluid Sci. 2014;53:136–41. https://doi.org/10.1016/j.expthermflusci.2013.11.018.

    Article  CAS  Google Scholar 

  160. Ranjbarzadeh R, Karimipour A, Afrand M, Isfahani AHM, Shirneshan A. Empirical analysis of heat transfer and friction factor of water/graphene oxide nanofluid flow in turbulent regime through an isothermal pipe. Appl Therm Eng. 2017;126:538–47.

    Article  CAS  Google Scholar 

  161. Suresh S, Venkitaraj KP, Selvakumar P, Chandrasekar M. Synthesis of Al2O3–Cu/water hybrid nanofluids using two step method and its thermo physical properties. Colloids Surf A. 2011;388:41–8.

    Article  CAS  Google Scholar 

  162. Ranjbarzadeh R, Isfahani AM, Afrand M, Karimipour A, Hojaji M. An experimental study on heat transfer and pressure drop of water/graphene oxide nanofluid in a copper tube under air cross-ow: applicable as a heat exchanger. Appl Therm Eng. 2017;125:69–79.

    Article  CAS  Google Scholar 

  163. Selvam C, Balaji T, Lal DM, Harish S. Convective heat transfer coeffcient and pressure drop of water-ethylene glycol mixture with graphene nanoplatelets. Exp Thermal Fluid Sci. 2017;80:67–76.

    Article  CAS  Google Scholar 

  164. Kumar V, Tiwari AK, Ghosh SK. Effect of variable spacing on performance of plate heat exchanger using nanofluids. Energy. 2016;114:1107–19.

    Article  CAS  Google Scholar 

  165. Akhavan-Zanjani H, Saar-Avval M, Mansourkiaei M, Ahadi M, Sharif F. Turbulent convective heat transfer and pressure drop of graphene water nanofluid owing inside a horizontal circular tube. J Dispers Sci Technol. 2014;35(9):1230–40.

    Article  CAS  Google Scholar 

  166. Sadeghinezhad E, Togun H, Mehrali M, Nejad PS, Latibari ST, Abdulrazzaq T, Kazi S, Metselaar HSC. An experimental and numerical investigation of heat transfer enhancement for graphene nanoplatelets nanofluids in turbulent flow conditions. Int J Heat Mass Transf. 2015;81:41–51.

    Article  CAS  Google Scholar 

  167. Akhavan-Zanjani H, SaarAvval M, Mansourkiaei M, Sharif F, Ahadi M. Experimental investigation of laminar forced convective heat transfer of graphene water nanofluid inside a circular tube. Int J Thermal Sci. 2016;100:316–23. https://doi.org/10.1016/j.ijthermalsci.2015.10.003.

    Article  CAS  Google Scholar 

  168. Arzani HK, Amiri A, Arzani HK, Rozali SB, Kazi SN, Badarudin A. Toward improved heat transfer performance of annular heat exchangers with water/ethylene glycol-based nanofluids containing graphene nanoplatelets. J Therm Anal Calorim. 2016;126(3):1427–36. https://doi.org/10.1007/s10973-016-5663-8.

    Article  CAS  Google Scholar 

  169. Zhang L, Yu Z, Li D, Fan L, Zhu Y, Hong R, Hu Y, Fan J, Cen K. Enhanced critical heat flux during quenching of extremely dilute aqueous colloidal suspensions with graphene oxide nanosheets. J Heat Trans. 2013;135(5):054502.

    Article  Google Scholar 

  170. Zhang L, Fan L, Yu Z, Cen K. An experimental investigation of transient pool boiling of aqueous nanofluids with graphene oxide nanosheets as characterized by the quenching method. Int J Heat Mass Transf. 2014;73:410–4.

    Article  CAS  Google Scholar 

  171. Park SD, Won Lee S, Kang S, Bang IC, Kim JH, Shin HS, Lee DW, Won Lee D. Effects of nanofluids containing graphene/graphene-oxide nanosheets on critical heat flux. Appl Phys Lett. 2010;97(2):023–103.

    Article  Google Scholar 

  172. Park SD, Lee SW, Kang S, Kim SM, Bang IC. Pool boiling chf enhancement by graphene oxide nanofluid under nuclear coolant chemical environments. Nucl Eng Des. 2012;252:184–91.

    Article  CAS  Google Scholar 

  173. Park SD, Bang IC. Flow boiling chf enhancement in an external reactor vessel cooling (ERVC) channel using graphene oxide nanofluid. Nucl Eng Des. 2013;265:310–8.

    Article  CAS  Google Scholar 

  174. Park S-S, Kim YH, Jeon YH, Hyun MT, Kim N-J. Effects of spray-deposited oxidized multi-wall carbon nanotubes and graphene on pool-boiling critical heat flux enhancement. J Ind Eng Chem. 2015;24:276–83.

    Article  CAS  Google Scholar 

  175. Park SD, Bang IC. Experimental study of a universal chf enhancement mechanism in nanofluids using hydrodynamic instability. Int J Heat Mass Transf. 2014;70:844–50.

    Article  CAS  Google Scholar 

  176. Yudong L, Jiangqing W, Chuangjian S, Shichao G, Yongkun G, Quangui P. Nucleation rate and super cooling degree of water-based graphene oxide nanofluids. Appl Therm Eng. 2017;115:1226–36.

    Article  Google Scholar 

  177. Fan L-W, Li J-Q, Li D-Y, Zhang L, Yu Z-T, Cen K-F. The effect of concentration on transient pool boiling heat transfer of graphene-based aqueous nanofluids. Int J Therm Sci. 2015;91:83–95.

    Article  CAS  Google Scholar 

  178. Cheedarala RK, Park EJ, Park Y-B, Park HW. Highly wettable cuo: graphene oxide coreshell porous Nano composites for enhanced critical heat flux. Phys Status Solidi. 2015;212(8):1756–66.

    Article  CAS  Google Scholar 

  179. Sadeghinezhad E, Mehrali M, Akhiani AR, Latibari ST, Dolatshahi-Pirouz A, Metselaar HSC, Mehrali M. Experimental study on heat transfer augmentation of graphene based ferro fluids in presence of magnetic field. Appl Thermal Eng. 2017;114:415–27. https://doi.org/10.1016/j.applthermaleng.2016.11.199.

    Article  CAS  Google Scholar 

  180. Selvakumar P, Suresh S. Convective performance of CuO/water nanofluid in an electronic heat sink. Exp Thermal Fluid Sci. 2012;40:57–63.

    Article  CAS  Google Scholar 

  181. Suresh S, Venkitaraj KP, Selvakumar P, Chandrasekhar M. Effect of Al2O3–Cu/water hybrid nanofluid in heat transfer. Exp Thermal Fluid Sci. 2012;38:54–60.

    Article  CAS  Google Scholar 

  182. Gopi Kannan K, Kamatchi R, Dsilva Winfred D, Rufuss. Potential applications of Nano-enhanced phase change material composites. New York: CRC Press; 2022.

    Google Scholar 

  183. Kamatchi R, Gopi Kannan K. An aqua based reduced graphene oxide nanofluids for heat transfer applications: synthesis characterization, stability analysis, and thermophysical properties. Int J Renew Energy Res. 2018;8:313–9.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Kumaresan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suresh, K., Selvakumar, P., Kumaresan, G. et al. A critical review on the effect of morphology, stability, and thermophysical properties of graphene nanoparticles in nanolubricants and nanofluids. J Therm Anal Calorim 148, 451–472 (2023). https://doi.org/10.1007/s10973-022-11662-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-022-11662-4

Keywords

Navigation