Skip to main content

Advertisement

Log in

Identification of barriers and drivers to implementation of solar drying technologies

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The requirement for energy is increasing day by day, and the available fossil reserves will be depleted shortly leading to various environmental hazards. Drying processes in industries, agriculture sector and house hold activities are being adopted using fossile fuel-based technologies. To reduce the GHG emission contributions, solar drying can be implemented in these sectors for various practical applications, such as product drying, crop and timber drying. A lot of work is going on in this field to improve the performance of solar drying systems, but still, ground implementation of such a system has not been encouraging so far. In this work, an attempt has been made to identify various barriers categorized as political barriers, economical barriers, technical or institutional barriers, and social and environmental barriers which can be taken into the consideration for better implementation of solar drying systems. Keeping this in view, this paper presents a clear insight into the reasons for the limited smallholder ownership of commercially available solar dryers. Also, several potential driving factors have been discussed to ensure the increased utilization of solar-thermal-based drying technology, contributing toward the sustainable development of society.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

CFA:

Central financial assistance

CPSU:

Central public sector undertaking

EU:

European union

FiT:

Feed-in-tariffs

GSD:

Greenhouse solar dryer

KUSUM:

Kisan Urja Suraksha Evam Uttam Mahabhiyan

MNRE:

Ministry of New and Renewable Energy

NABARD:

National Bank of Agriculture and Rural Development

GHG:

Greenhouse gas

LCCA:

Life cycle cost analysis

MRR:

Moisture removal rate

NISE:

National Institute of Solar Energy

PCM:

Phase change material

PV:

Photovoltaic

SC:

Solar collector

SPPS:

Solar PV pumping system

References

  1. Kalogirou SA. Solar thermal collectors and applications. Prog Energy Combust Sci. 2004;30(3):231–95.

    Article  CAS  Google Scholar 

  2. Sharma N. Experimental investigation of the performance of an indirect-mode natural convection solar dryer for drying fenugreek leaves. J Therm Anal Calorim. 2014;118(1):523–31.

    Article  Google Scholar 

  3. Pirasteh G, Saidur R, Rahman SMA, Rahim NA. A review on development of solar drying applications. Renew Sustain Energy Rev. 2014;31:133–48.

    Article  Google Scholar 

  4. VijayaVenkataRaman S, Iniyan S, Goic R. A review of solar drying technologies. Renew Sustain Energy Rev. 2012;16(5):2652–70.

    Article  Google Scholar 

  5. Verbruggen A, Fischedick M, Moomaw W, Weir T, Nadaï A, Nilsson LJ, Nyboer J, Sathaye J. Renewable energy costs, potentials, barriers: conceptual issues. Energy Policy. 2010;38(2):850–61.

    Article  Google Scholar 

  6. Shringi V, Kothari S, Panwar NL. Experimental investigation of drying of garlic clove in solar dryer using phase change material as energy storage. J Therm Anal Calorim. 2014;118(1):533–9.

    Article  CAS  Google Scholar 

  7. Kondareddy R, Sivakumaran N, Radhakrishnan K, Nayak PK. Performance analysis of solar tunnel dryer with thermal storage and photovoltaic system for drying star fruit. IOP Conf Ser Earth Environ Sci. 2020;463(1):012138.

    Article  Google Scholar 

  8. Murali S, Amulya PR, Alfiya PV, Delfiya DA, Samuel MP. Design and performance evaluation of solar-LPG hybrid dryer for drying of shrimps. Renew Energy. 2020;147:2417–28.

    Article  Google Scholar 

  9. Ouaabou R, Nabil B, Ouhammou M, Idlimam A, Lamharrar A, Ennahli S, Hanine H, Mahrouz M. Impact of solar drying process on drying kinetics, and on bioactive profile of Moroccan sweet cherry. Renew Energy. 2020;151:908–18.

    Article  CAS  Google Scholar 

  10. Sethi VP, Dhiman M. Design, space optimization and modelling of solar-cum-biomass hybrid greenhouse crop dryer using flue gas heat transfer pipe network. Sol Energy. 2020;206:120–35.

    Article  Google Scholar 

  11. Dorouzi M, Mortezapour H, Akhavan HR, Moghaddam AG. Tomato slices drying in a liquid desiccant-assisted solar dryer coupled with a photovoltaic-thermal regeneration system. Sol Energy. 2018;162:364–71.

    Article  Google Scholar 

  12. Misha S, Mat S, Ruslan MH, Salleh E, Sopian K. Performance of a solar assisted solid desiccant dryer for kenaf core fiber drying under low solar radiation. Sol Energy. 2015;112:194–204.

    Article  Google Scholar 

  13. Shanmugam V, Natarajan E. Experimental investigation of forced convection and desiccant integrated solar dryer. Renew energy. 2006;31(8):1239–51.

    Article  CAS  Google Scholar 

  14. Saxena A, Norton B, Goel V, Singh DB. Solar cooking innovations, their appropriateness, and viability. Environ Sci Pollut Res. 2022. https://doi.org/10.1007/s11356-022-21670-4.

    Article  Google Scholar 

  15. Kumar R, Bharadwaj G, Kharub M, Goel V, Kumar A. Performance analysis of nanofluid based direct absorption solar collector of different configurations: a two-phase CFD modeling. Energy Sources Part A Recovery Util Environ Eff. 2022. https://doi.org/10.1080/15567036.2022.2030439.

    Article  Google Scholar 

  16. Souayeh B, Hdhiri N, Alam MW, Hammami F, Alfannakh H. Convective heat transfer and entropy generation around a sphere within cuboidal enclosure. J Thermophys Heat Trans. 2020;34(3):605–25.

    Article  CAS  Google Scholar 

  17. Souayeh B, Bhattacharyya S, Hdhiri N, Hammami F. Numerical investigation on heat transfer augmentation in a triangular solar air heater tube fitted with angular-cut varied-length twisted tape. Eur Phys J Plus. 2021;136(6):1–32.

    Article  Google Scholar 

  18. Alam MW, Souayeh B. Parametric CFD thermal performance analysis of full, medium, half and short length dimple solar air tube. Sustainability. 2021;13(11):6462.

    Article  CAS  Google Scholar 

  19. Hdhiri N, Souayeh B, Alfannakh H, Beya BB. Natural convection study with internal heat generation on heat transfer and fluid flow within a differentially heated square cavity filled with different working fluids and porous media. BioNanoScience. 2019;9:702–22.

    Article  Google Scholar 

  20. Maiti S, Patel P, Vyas K, Eswaran K, Ghosh PK. Performance evaluation of a small scale indirect solar dryer with static reflectors during non-summer months in the Saurashtra region of western India. Sol Energy. 2011;85(11):2686–96.

    Article  Google Scholar 

  21. Sreerag TS, Jithish KS. Experimental investigations of a solar dryer with and without multiple phase change materials (PCM’s). World J Eng. 2016;13(3):210–7.

    Article  CAS  Google Scholar 

  22. Tiwari S, Tiwari GN. Thermal analysis of photovoltaic-thermal (PVT) single slope roof integrated greenhouse solar dryer. Sol Energy. 2016;138:128–36.

    Article  Google Scholar 

  23. Tiwari S, Tiwari GN, Al-Helal IM. Performance analysis of photovoltaic–thermal (PVT) mixed mode greenhouse solar dryer. Sol Energy. 2016;133:421–8.

    Article  Google Scholar 

  24. Rabha DK, Muthukumar P. Performance studies on a forced convection solar dryer integrated with a paraffin wax–based latent heat storage system. Sol Energy. 2017;149:214–26.

    Article  CAS  Google Scholar 

  25. Sahdev RK, Kumar M, Dhingra AK. Effect of mass on convective heat transfer coefficient during open sun drying of groundnut. J Food Sci Technol. 2017;54(13):4510–6.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Lingayat A, Chandramohan VP, Raju VRK. Design, development and performance of indirect type solar dryer for banana drying. Energy Procedia. 2017;109:409–16.

    Article  Google Scholar 

  27. Bhardwaj AK, Chauhan R, Kumar R, Sethi M, Rana A. Experimental investigation of an indirect solar dryer integrated with phase change material for drying valerianajatamansi (medicinal herb). Case Study Therm Eng. 2017;10:302–14.

    Article  Google Scholar 

  28. Arul GP, Shanmugam S, Veerappan A, Kumar P. Performance analysis of double-pass oscillating bed solar dryer for drying of non-parboiled paddy grains. Energy Sources A Recovery Util Environ Eff. 2019;41(4):418–26.

    Article  Google Scholar 

  29. Boda M, Papade C. Analysis of solar dryer using tono therm M-65 phase change material. Adv Intel Syst Res. 2016;137:35–40.

    Google Scholar 

  30. Sharma A, Shukla A, Aye L. Low carbon energy supply: trends, technology, management. Springer; 2018.

    Book  Google Scholar 

  31. Chaudhari RH, Gora A, Modi VM, Chaudhari H. Economic analysis of hybrid solar dryer for ginger drying. Int J Curr Microbiol Appl Sci. 2018;7(11):2725–31.

    Article  CAS  Google Scholar 

  32. Karthikeyan AK, Murugavelh S. Thin layer drying kinetics and exergy analysis of turmeric (Curcuma longa) in a mixed mode forced convection solar tunnel dryer. Renew Energy. 2018;128:305–12.

    Article  Google Scholar 

  33. Murugavelh S, Anand B, Midhun Prasad K, Nagarajan R, Azariah Pravin Kumar S. Energy analysis and kinetic study of tomato waste drying in a mixed mode solar tunnel dryer. Energy Sources A Recovery Util Environ Eff. 2019. https://doi.org/10.1080/15567036.2019.1679289.

    Article  Google Scholar 

  34. Chandrasekar M, Senthilkumar T, Kumaragurubaran B, Fernandes JP. Experimental investigation on a solar dryer integrated with condenser unit of split air conditioner (A/C) for enhancing drying rate. Renew Energy. 2018;122:375–81.

    Article  Google Scholar 

  35. Haque T, Tiwari M, Bose M, Kedare SB. Drying kinetics, quality and economic analysis of a domestic solar dryer for agricultural products. INAE Lett. 2019;4(3):147–60.

    Article  Google Scholar 

  36. Poonia S, Singh AK, Santra P, Jain D. Economic analysis of inclined solar dryer for drying of fruit and vegetables. Int J Agric Sci. 2019;11:9154–9.

    CAS  Google Scholar 

  37. Jain A, Sharma M, Kumar A, Sharma A, Palamanit A. Computational fluid dynamics simulation and energy analysis of domestic direct-type multi-shelf solar dryer. J Therm Anal Calorim. 2019;136(1):173–84.

    Article  CAS  Google Scholar 

  38. Kesavan S, Arjunan TV, Vijayan S. Thermodynamic analysis of a triple-pass solar dryer for drying potato slices. J Therm Anal Calorim. 2019;136(1):159–71.

    Article  CAS  Google Scholar 

  39. Lakshmi DVN, Muthukumar P, Layek A, Nayak PK. Performance analyses of mixed mode forced convection solar dryer for drying of stevia leaves. Sol Energy. 2019;188:507–18.

    Article  Google Scholar 

  40. Ekka JP, Palanisamy M. Determination of heat transfer coefficients and drying kinetics of red chilli dried in a forced convection mixed mode solar dryer. Therm Sci Eng Prog. 2020;19:100607.

    Article  Google Scholar 

  41. Singh AK, Poonia S, Jain D, Mishra D, Singh RK. Economic evaluation of a business model of selected solar thermal devices in Thar desert of Rajasthan. India Agric Eng Int CIGR J. 2020;22(3):129–37.

    Google Scholar 

  42. Lingayat A, Chandramohan VP, Raju VRK, Kumar A. Development of indirect type solar dryer and experiments for estimation of drying parameters of apple and watermelon. Therm Sci Eng Prog. 2020;16:100477.

    Article  Google Scholar 

  43. Zachariah R, Maatallah T, Modi A. Environmental and economic analysis of a photovoltaic assisted mixed mode solar dryer with thermal energy storage and exhaust air recirculation. Int J Energy Res. 2021;45(2):1879–91.

    Article  CAS  Google Scholar 

  44. Nagarajan G, Rao AN, Renganarayanan S. Emission and performance characteristics of neat ethanol fuelled Dl diesel engine. Int J Ambient Energy. 2002;23(3):149–58.

    Article  Google Scholar 

  45. Singh D, Mall P. 2020 Experimental investigation of thermal performance of indirect mode solar dryer with phase change material for banana slices. Energy Sources A Recovery Util Environ Eff. 2020. https://doi.org/10.1080/15567036.2020.1810825.

    Article  Google Scholar 

  46. Lingayat A, Raju VRK. Drying kinetics of tomato (Solanum lycopersicum) and Brinjal (Solanum melongena) using an indirect type solar dryer and performance parameters of dryer. Heat Mass Transf. 2021;57(5):853–72.

    Article  Google Scholar 

  47. Spall S, Sethi VP. Design, modeling and analysis of efficient multi-rack tray solar cabinet dryer coupled with north wall reflector. Sol Energy. 2020;211:908–19.

    Article  Google Scholar 

  48. Kapgate GM, Dongre NK, Yele AD, Yele TI, Dongarwar IA, Chafale CR. Fabrication of solar powered air dryer for food preservation. Int Res J Mod Eng Technol Sci. 2020;2(9):1488–93.

    Google Scholar 

  49. Shadab M, Mastan SI, Tarique SM, Ahmed SMS, Suman S. Design and modification of solar seed dryer. Int J Innov Eng Res Technol. 2020;7(4):115–9.

    Google Scholar 

  50. Kumar BK, Vishnupriyan J, Chidambarathanu K, Vasudevan KR. Experimental investigations of high efficiency smart solar tunnel dryer system. AIP Conf Proc. 2020;2283:020107.

    Article  Google Scholar 

  51. Babar OA, Tarafdar A, Malakar S, Arora VK, Nema PK. Design and performance evaluation of a passive flat plate collector solar dryer for agricultural products. J Food Process Eng. 2020;43(10):e13484.

    Article  Google Scholar 

  52. Kumar KS, Saravanan BA. Design and fabrication of solar dryer for dehydration of vegetables. AIP Conf Proc. 2020;2270(1):140007.

    Google Scholar 

  53. Machala ML, Tan FL, Poletayev A, Khan MI, Benson SM. Overcoming barriers to solar dryer adoption and the promise of multi-seasonal use in India. Energy Sustain Dev. 2022;68:18–28.

    Article  Google Scholar 

  54. Yadav AA, Bagi JS, Prabhu PA. Drying kinetics of a solar dryer for drying of potato chips in Western Maharashtra. India J Mech Energy Eng. 2022;6(1):91–8.

    Article  Google Scholar 

  55. Thakur AK, Singh R, Gehlot A, Kaviti AK, Aseer R, Suraparaju SK, Natarajan SK, Sikarwar VS. Advancements in solar technologies for sustainable development of agricultural sector in India: a comprehensive review on challenges and opportunities. Environ Sci Pollut Res. 2022;29:43607–34.

    Article  Google Scholar 

  56. Gupta A, Biswas A, Das B, Reddy BV. Development and testing of novel photovoltaic-thermal collector-based solar dryer for green tea drying application. Sol Energy. 2022;231:1072–91.

    Article  CAS  Google Scholar 

  57. Kushwah A, Kumar A, Pal A, Gaur MK. Experimental analysis and thermal performance of evacuated tube solar collector assisted solar dryer. Mater Today Proc. 2021;47(17):5846–51.

    Article  Google Scholar 

  58. Raina G, Sinha S. Outlook on the Indian scenario of solar energy strategies: policies and challenges. Energy Strategy Rev. 2019;24:331–41.

    Article  Google Scholar 

  59. Bardhan R, Debnath R, Jana A. Evolution of sustainable energy policies in India since 1948: A review. Wiley Interdiscip Rev: Energy Environ. 2019;8(5):e340.

    PubMed  Google Scholar 

  60. Arora DS, Busche S, Cowlin S, Engelmeier T, Jaritz J, Milbrandt A, Wang S. Indian renewable energy status report: background report for DIREC 2010. United States. 2010. https://www.nrel.gov/docs/fy11osti/48948.pdf

  61. Tyagi VV, Pathak AK, Singh HM, Kothari R, Selvaraj J. Renewable energy scenario in Indian context: vision and achievements. Proceedings of 4th IET Clean Energy and Technology Conference. Malaysia. 2016. https://doi.org/10.1049/cp.2016.1342.

  62. Kothari R, Vathistha A, Singh HM, Pathak VV, Tyagi VV, Yadav BC, Ashokkumar V, Singh DP. Assessment of Indian bioenergy policy for sustainable environment and its impact for rural India: strategic implementation and challenges. Environ Technol Innov. 2020;20:101078.

    Article  Google Scholar 

  63. Ministry of new and renewable energy annual report. https://mnre.gov.in/img/documents/uploads/d6982ee8cce147288e7bf9434eebff55.pdf (2017).

  64. Ministry of statistics and programme implementation. Energy-statistics-2016. https://mospi.gov.in/documents/213904/1606151//Energy%20Statistics%20India%2020221644825594802.pdf/aed59aac-4d5a-995b-1232-bb68397cd873 (2016).

  65. Ministry of statistics and programme implementation. Energy-statistics-2017. https://smartnet.niua.org/sites/default/files/resources/energy_statistics_2017r.pdf.pdf (2017).

  66. Ministry of statistics and programme implementation. Energy-statistics-2018. https://methodist.edu.in/web/uploads/files/Energy_Statistics_2018.pdf (2018).

  67. Ministry of statistics and programme implementation. Energy-statistics-2019. http://www.indiaenvironmentportal.org.in/files/file/Energy%20Statistics%202019.pdf (2019).

  68. Kar SK, Sharma A, Roy B. Solar energy market developments in India. Renew Sustain Energy Rev. 2016;62:121–33.

    Article  Google Scholar 

  69. Spencer T, Rodrigues N, Pachouri R, Thakre S, Renjith G. Renewable power pathways: modelling the integration of wind and solar by 2030 in India. The Energy and Resources Institute, New Delhi. 2020.

  70. Gadre R, Jain A, Jaiswal S, Gombar V, Traum D. India’s clean power revolution: a success story with global implications. https://data.bloomberglp.com/professional/sites/24/2020-06-26-Indias-Clean-Power-Revolution_Final.pdf. Accessed 26 June 2020.

  71. Shidore S, Busby JW. One more try: the international solar alliance and India’s search for geopolitical influence. Energy Strategy Rev. 2019;26:100385.

    Article  Google Scholar 

  72. The Hindu, 2020. https://www.thehindu.com/news/national/tamil-nadu/solar-dryers-with-50-subsidy-to-be-given-to-virudhunagar-farmers/article31748634.ece. Accessed on 12 Dec 2020

  73. Joshi G, Yenneti K. Community solar energy initiatives in India: a pathway for addressing energy poverty and sustainability? Energy Build. 2020;210:109736.

    Article  Google Scholar 

  74. Garg, V. India: Vast potential in solar-powered irrigation. Institute for Energy Economics and Financial Analysis. 2018. https://ieefa.org/sites/default/files/resources/Indias-Vast-Potential-in-Solar-Powered-Irrigation-.pdf.

  75. Santra P. Performance evaluation of solar PV pumping system for providing irrigation through micro-irrigation techniques using surface water resources in hot arid region of India. Agric Water Manag. 2021;245:106554.

    Article  Google Scholar 

  76. IRENA, 2018, Renewable energy and jobs annual review 2018. https://irena.org/-/media/Files/IRENA/Agency/Publication/2018/May/IRENA_RE_Jobs_Annual_Review_2018.pdf.

  77. Tarai RK, Kale P. Solar PV policy framework of Indian States: overview, pitfalls, challenges, and improvements. Renew Energy Focus. 2018;26:46–57.

    Article  Google Scholar 

  78. Kumar M, Sansaniwal SK, Khatak P. Progress in solar dryers for drying various commodities. Renew Sustain Energy Rev. 2016;55:346–60.

    Article  Google Scholar 

  79. Gorjian S, Calise F, Kant K, Ahamed MS, Copertaro B, Najafi G, Zhang X, Aghaei M, Shamshiri RR. A review on opportunities for implementation of solar energy technologies in agricultural greenhouses. J Clean Prod. 2021;285:124807.

    Article  Google Scholar 

  80. Wyllie JOY, Essah EA, Ofetotse EL. Barriers of solar energy uptake and the potential for mitigation solutions in Barbados. Renew Sustain Energy Rev. 2018;91:935–49.

    Article  Google Scholar 

  81. Meijer LLJ, Huijben JCCM, Van Boxstael A, Romme AGL. Barriers and drivers for technology commercialization by SMEs in the Dutch sustainable energy sector. Renew Sustain Energy Rev. 2019;112:114–26.

    Article  Google Scholar 

  82. Prakash O, Kumar A. Historical and recent trend of solar drying system: a review. Int J Green Energy. 2013;10(7):690–738.

    Article  Google Scholar 

  83. Ohunakin OS, Adaramola MS, Oyewola OM, Fagbenle RO. Solar energy applications and development in Nigeria: drivers and barriers. Renew Sustain Energy Rev. 2014;32:294–301.

    Article  Google Scholar 

  84. Lamidi RO, Jiang L, Pathare PB, Wang Y, Roskilly AP. Recent advances in sustainable drying of agricultural produce: a review. Appl Energy. 2019;233:367–85.

    Article  Google Scholar 

  85. Vijayan S, Arjunan TV, Kumar A. Mathematical modeling and performance analysis of thin layer drying of bitter gourd in sensible storage based indirect solar dryer. Innov Food Sci Emerg Technol. 2016;36:59–67.

    Article  Google Scholar 

  86. Zarezade M, Mostafaeipour A. Identifying the effective factors on implementing the solar dryers for Yazd province, Iran. Renew Sustain Energy Rev. 2016;57:765–75.

    Article  Google Scholar 

  87. Engelken M, Römer B, Drescher M, Welpe IM, Picot A. Comparing drivers, barriers, and opportunities of business models for renewable energies: a review. Renew Sustain Energy Rev. 2016;60:795–809.

    Article  Google Scholar 

  88. Painuly JP. Barriers to renewable energy penetration; a framework for analysis. Renew Energy. 2001;24(1):73–89.

    Article  Google Scholar 

  89. Mondal MAH, Kamp LM, Pachova NI. Drivers, barriers, and strategies for implementation of renewable energy technologies in rural areas in Bangladesh—an innovation system analysis. Energy Policy. 2010;38(8):4626–34.

    Article  Google Scholar 

  90. Mahtta R, Joshi PK, Jindal AK. Solar power potential mapping in India using remote sensing inputs and environmental parameters. Renew Energy. 2014;71:255–62.

    Article  Google Scholar 

  91. Ssemwanga M, Makule E, Kayondo SI. Performance analysis of an improved solar dryer integrated with multiple metallic solar concentrators for drying fruits. Sol Energy. 2020;204:419–28.

    Article  Google Scholar 

  92. Andharia JK, Bhattacharya P, Maiti S. Development and performance analysis of a mixed mode solar thermal dryer for drying of natural rubber sheets in the north-eastern part of India. Sol Energy. 2020;208:1091–102.

    Article  Google Scholar 

  93. Bal LM, Satya S, Naik SN. Solar dryer with thermal energy storage systems for drying agricultural food products: a review. Renew Sustain Energy Rev. 2010;14(8):2298–314.

    Article  Google Scholar 

  94. Kiefer CP, del Río P. Analysing the barriers and drivers to concentrating solar power in the European Union. Policy implications. J Clean Prod. 2020;251:119400.

    Article  Google Scholar 

  95. Murthy MR. A review of new technologies, models and experimental investigations of solar driers. Renew Sustain Energy Rev. 2009;13(4):835–44.

    Article  Google Scholar 

  96. Kumar N, Pal N. The existence of barriers and proposed recommendations for the development of renewable energy in Indian perspective. Environ Dev Sustain. 2020;22(3):2187–205.

    Article  Google Scholar 

  97. Mohana Y, Mohanapriya R, Anukiruthika T, Yoha KS, Moses JA, Anandharamakrishnan C. Solar dryers for food applications: concepts, designs, and recent advances. Sol Energy. 2020;208:321–44.

    Article  Google Scholar 

  98. Surendra KC, Khanal SK, Shrestha P, Lamsal B. Current status of renewable energy in Nepal: opportunities and challenges. Renew Sustain Energy Rev. 2011;15(8):4107–17.

    Article  Google Scholar 

  99. Mishra S, Verma S, Chowdhury S, Dwivedi G. Analysis of recent developments in greenhouse dryer on various parameters—a review. Mater Today Proc. 2021;38:371–7.

    Article  CAS  Google Scholar 

  100. Bhanu AS, Elavarasan E, Natarajan SK, Anandu A, Senin HM. Experimental investigation of drying kinetics of poovan banana under forced convection solar drying. In: Acharya SK, Mishra DP, editors. Current advances in mechanical engineering. Singapore: Springer; 2021. p. 621–31.

    Chapter  Google Scholar 

  101. Yassen TA, Al-Kayiem HH. Experimental investigation and evaluation of hybrid solar/thermal dryer combined with supplementary recovery dryer. Sol Energy. 2016;134:284–93.

    Article  Google Scholar 

  102. del Río P, Peñasco C, Mir-Artigues P. An overview of drivers and barriers to concentrated solar power in the European Union. Renew Sustain Energy Rev. 2018;81:1019–29.

    Article  Google Scholar 

  103. Salim HK, Stewart RA, Sahin O, Dudley M. Drivers, barriers and enablers to end-of-life management of solar photovoltaic and battery energy storage systems: a systematic literature review. J Clean Prod. 2019;211:537–54.

    Article  Google Scholar 

  104. Haas J, Palma-Behnke R, Valencia F, Araya P, Díaz-Ferrán G, Telsnig T, Eltrop L, Díaz M, Püsche S, Grandel M, Román R, Jiménez-Estévez G. Sunset or sunrise? Understanding the barriers and options for the massive deployment of solar technologies in Chile. Energy Policy. 2018;112:399–414.

    Article  Google Scholar 

  105. Timilsina GR, Kurdgelashvili L, Narbel PA. A review of solar energy: markets, economics and policies: In: Adaramola M, editor. Solar energy: application, economics, and public perception. Oakville (ON): Apple Academic Press; 2015.

  106. Sen S, Ganguly S. Opportunities, barriers and issues with renewable energy development—a discussion. Renew Sustain Energy Rev. 2017;69:1170–81.

    Article  Google Scholar 

  107. Solangi KH, Islam MR, Saidur R, Rahim NA, Fayaz H. A review on global solar energy policy. Renew Sustain Energy Rev. 2011;15(4):2149–63.

    Article  Google Scholar 

  108. El Hage H, Herez A, Ramadan M, Bazzi H, Khaled M. An investigation on solar drying: a review with economic and environmental assessment. Energy. 2018;157:815–29.

    Article  Google Scholar 

  109. Punia S, Nehra V, Luthra S. Recognition and prioritization of challenges in growth of solar energy using analytical hierarchy process: Indian outlook. Energy. 2016;100:332–48.

    Article  Google Scholar 

  110. Lu Y, Chang R, Shabunko V, Yee ATL. The implementation of building-integrated photovoltaics in Singapore: drivers versus barriers. Energy. 2019;168:400–8.

    Article  Google Scholar 

  111. Fashina A, Mundu M, Akiyode O, Abdullah L, Sanni D, Ounyesiga L. The drivers and barriers of renewable energy applications and development in Uganda: a review. Clean Technol. 2018;1(1):9–39.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

VG contributed to conceptualization, methodology, writing–original draft preparation. SB contributed to methodology, and writing–original draft preparation. RK contributed to writing–reviewing and editing, formal analysis. SKP contributed to conceptualization, writing–reviewing and editing, VVT contributed to writing–reviewing and editing, supervision. RPS supervised the study.

Corresponding author

Correspondence to Suvanjan Bhattacharyya.

Ethics declarations

Conflict of interest

It is to declare that the authors did not receive any financial support from any organization for the submitted work. Also, there is no conflict of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goel, V., Bhattacharyya, S., Kumar, R. et al. Identification of barriers and drivers to implementation of solar drying technologies. J Therm Anal Calorim 148, 2977–3000 (2023). https://doi.org/10.1007/s10973-022-11631-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-022-11631-x

Keywords

Navigation