Skip to main content
Log in

Thermal roasting behavior and kinetics of African cobalt-rich copper sulfide ore in air atmosphere

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

African cobalt-rich copper sulfide ore (CRCS) is an important copper-cobalt resource. The CRCS mainly contains chalcopyrite (CuFeS2), pyrite (FeS2), and carrollite (CuCo2S4). In our previous study, activated roasting was used to treat CRCS, converting CuCo2S4 into sulfate that is easy to leach Cu and Co. It was found that the kinetics of CuCo2S4 in CRCS transformation was slow during roasting, which is a key factor affecting the subsequent increase in cobalt leaching rate. Therefore, it is of practical significance to explore the kinetics process in the activated roasting process of CRCS. In this study, thermal roasting kinetics of CRCS in the air atmosphere was studied by TG-DTG method at heating rates of 5, 10, 15, and 20 K min−1, respectively. Meanwhile, the phase transformation behavior of major minerals, pyrite, and carrollite during roasting was studied. The results show that the roasting process of CRCS mainly goes through three stages: Stage I: removal of free water and crystal water; Stage II: oxidation of sulfide minerals to sulfate; and Stage III: decomposition of sulfate to oxide. Given Stage II, the deconvolution separation method was used to separate overlapping reaction peaks of FeS2 and CuCo2S4. The kinetic parameters were evaluated by Friedman method, KAS method, FWO method, and CR method, respectively. The most probable mechanism function and activation energy (E) were determined by comparing the model-free method with the model-fitting method. Results showed that the oxidation of FeS2 in CRCS conforms to the 2-D diffusion model; the oxidation of CuCo2S4 in CRCS accords with the Avrami–Eroféev model. Finally, thermodynamic parameters of the reaction including enthalpy, entropy, and Gibbs free energy were calculated. Kinetic analysis shows that the heating rate has a significant influence on the ore phase transition during the oxidation process of CRCS. The oxidation processes of different ore in CRCS conform to different kinetic mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

CRCS:

Cobalt-rich copper sulfide ore

FWO:

Flynn–Wall–Ozawa method

KAS:

Kissinger–Akahira–Sunose method

CR:

Coats–Redfern method

E :

Activation energy (kJ mol−1)

A :

Exponential factor (min−1)

α :

Reaction conversion fraction

β :

Heating rate (K min1)

f(α):

Differential forms of kinetic mechanism function

G(α):

The integral form of kinetic mechanism function

TAK:

Thermal roasting kinetics

EV:

Electric vehicles

References

  1. Shekhar AR, Parekh MH, Pol VG. Worldwide ubiquitous utilization of lithium-ion batteries: What we have done, are doing, and could do safely once they are dead? J Power Sources. 2022;523:231015. https://doi.org/10.1016/j.jpowsour.2022.231015.

    Article  CAS  Google Scholar 

  2. Liu Y, Yu H, Wang Y, Tang D, Qiu W, Li W. Microwave hydrothermal renovating and reassembling spent lithium cobalt oxide for lithium-ion battery. Waste Manag. 2022;143:186–94. https://doi.org/10.1016/j.wasman.2022.02.024.

    Article  CAS  PubMed  Google Scholar 

  3. Dehaine Q, Tijsseling LT, Glass HJ, Törmänen T, Butcher AR. Geometallurgy of cobalt ores: a review. Miner Eng. 2021;160:106656. https://doi.org/10.1016/j.mineng.2020.106656.

    Article  CAS  Google Scholar 

  4. Chan KH, Malik M, Azimi G. Separation of lithium, nickel, manganese, and cobalt from waste lithium-ion batteries using electrodialysis. Resour Conserv Recycl. 2022;178:106076. https://doi.org/10.1016/j.resconrec.2021.106076.

    Article  CAS  Google Scholar 

  5. Lme. London metal exchange: Cobalt.; 2022. [https://www.lme.com/]; URL https://www.lme.com/en-GB/Metals/Minor-metals/Cobalt#tabIndex=2 (accessed 2022.04.09)

  6. Crundwell FK, du Preez NB, Knights BDH. Production of cobalt from copper-cobalt ores on the African Copperbelt -an overview. Miner Eng. 2020;156: 106450. https://doi.org/10.1016/j.mineng.2020.106450.

    Article  CAS  Google Scholar 

  7. Cailteux JLH, Kampunzu AB, Lerouge C, Kaputo AK, Milesi JP. Genesis of sediment-hosted stratiform copper–cobalt deposits, central African Copperbelt. J Afr Earth Sci. 2005;42(1–5):134–58. https://doi.org/10.1016/j.jafrearsci.2005.08.001.

    Article  CAS  Google Scholar 

  8. Davenport FKCS. Production of cobalt from the copper–cobalt ores of the central african copperbelt. Extractive Metallurgy of Nickel, Cobalt and Platinum Group Metals; 2011; 1: 377–91.

  9. Tijsseling LT, Dehaine Q, Rollinson GK, Glass HJ. Flotation of mixed oxide sulphide copper-cobalt minerals using xanthate, dithiophosphate, thiocarbamate and blended collectors. Miner Eng. 2019;138:246–56. https://doi.org/10.1016/j.mineng.2019.04.022.

    Article  CAS  Google Scholar 

  10. Dehaine Q, Filippov LO, Filippova IV, Tijsseling LT, Glass HJ. Novel approach for processing complex carbonate-rich copper-cobalt mixed ores via reverse flotation. Miner Eng. 2021. https://doi.org/10.1016/j.mineng.2020.106710.

    Article  Google Scholar 

  11. Cui F, Mu W, Wang S, Xin H, Xu Q, Zhai Y, et al. Sodium sulfate activation mechanism on co-sulfating roasting to nickel-copper sulfide concentrate in metal extractions, microtopography and kinetics. Miner Eng. 2018;123:104–16. https://doi.org/10.1016/j.mineng.2018.04.013.

    Article  CAS  Google Scholar 

  12. Guangshi Li HCXZ. Phase transformation and element migration in the oxidation process of nickel-copper sulfide ore. In: TMS 2015 144th anuual meeting & exhibition. Orlando, FL, USA. 2015.

  13. Dunn JAKC. A TG/MS and DTA study of the oxidation of pentlandite. J Therm Anal Calorim. 1980;1(18):147–54.

    Article  Google Scholar 

  14. Vyazovkin S, Burnham AK, Criado JM, Pérez-Maqueda LA, Popescu C, Sbirrazzuoli N. ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data. Thermochim Acta. 2011;520(1–2):1–19. https://doi.org/10.1016/j.tca.2011.03.034.

    Article  CAS  Google Scholar 

  15. Xia W, Wang S, Wang H, Xu T. Thermal effects of asphalt SARA fractions, kinetic parameter calculation using isoconversional method and distribution models. J Thermal Anal Calorim. 2021;146(4):1577–92. https://doi.org/10.1007/s10973-020-10152-9.

    Article  CAS  Google Scholar 

  16. Vyazovkin S, Chrissafis K, Di Lorenzo ML, Koga N, Pijolat M, Roduit B. ICTAC Kinetics Committee recommendations for collecting experimental thermal analysis data for kinetic computations. Thermochim Acta. 2014;590:1–23. https://doi.org/10.1016/j.tca.2014.05.036.

    Article  CAS  Google Scholar 

  17. Janković B, Adnađević B, Jovanović J. Application of model-fitting and model-free kinetics to the study of non-isothermal dehydration of equilibrium swollen poly (acrylic acid) hydrogel: Thermogravimetric analysis. Thermochim Acta. 2007;452(2):106–15. https://doi.org/10.1016/j.tca.2006.07.022.

    Article  CAS  Google Scholar 

  18. Budrugeac P. An iterative model-free method to determine the activation energy of heterogeneous processes under arbitrary temperature programs. Thermochim Acta. 2011;523(1–2):84–9. https://doi.org/10.1016/j.tca.2011.05.003.

    Article  CAS  Google Scholar 

  19. Blanco D, Oulego P, Ramos D, Fernández B, Cuetos JM. Model-free kinetics applied to evaluate the long-term thermal stability of three [NTf2] anion-based ionic liquids. Thermochim Acta. 2017;656:70–84. https://doi.org/10.1016/j.tca.2017.08.002.

    Article  CAS  Google Scholar 

  20. Blaine RL, Kissinger HE. Homer Kissinger and the Kissinger equation. Thermochim Acta. 2012;540:1–6. https://doi.org/10.1016/j.tca.2012.04.008.

    Article  CAS  Google Scholar 

  21. Li H, Liu S, Zhao J, Li D, Yuan Y. Thermal degradation behaviors of polydimethylsiloxane-graft-poly(methyl methacrylate). Thermochim Acta. 2013;573:32–8. https://doi.org/10.1016/j.tca.2013.09.014.

    Article  CAS  Google Scholar 

  22. Berčič G. The universality of Friedman’s isoconversional analysis results in a model-less prediction of thermodegradation profiles. Thermochim Acta. 2017;650:1–7. https://doi.org/10.1016/j.tca.2017.01.011.

    Article  CAS  Google Scholar 

  23. Wang J, Laborie MG, Wolcott MP. Comparison of model-free kinetic methods for modeling the cure kinetics of commercial pheno—formaldehyde resins. Thermochim Acta. 2005;439(1–2):68–73. https://doi.org/10.1016/j.tca.2005.09.001.

    Article  CAS  Google Scholar 

  24. Jain AA, Mehra A, Ranade VV. Processing of TGA data: analysis of isoconversional and model fitting methods. Fuel. 2016;165:490–8. https://doi.org/10.1016/j.fuel.2015.10.042.

    Article  CAS  Google Scholar 

  25. Mian I, Li X, Jian Y, Dacres OD, Zhong M, Liu J. Kinetic study of biomass pellet pyrolysis by using distributed activation energy model and Coats Redfern methods and their comparison. Bioresour Technol. 2019;294:122099. https://doi.org/10.1016/j.biortech.2019.122099.

    Article  CAS  PubMed  Google Scholar 

  26. Naqvi SR, Tariq R, Hameed Z, Ali I, Naqvi M, Chen W. Pyrolysis of high ash sewage sludge: kinetics and thermodynamic analysis using Coats-Redfern method. Renew Energy. 2019;131:854–60. https://doi.org/10.1016/j.renene.2018.07.094.

    Article  CAS  Google Scholar 

  27. Huang M, Lv S, Zhou C. Thermal decomposition kinetics of glycine in nitrogen atmosphere. Thermochim Acta. 2013;552:60–4. https://doi.org/10.1016/j.tca.2012.11.006.

    Article  CAS  Google Scholar 

  28. Ruan S, Xing P, Wang C, Chen Y, Yin F, Jie X. Thermal decomposition kinetics of arsenopyrite in arsenic-bearing refractory gold sulfide concentrates in nitrogen atmosphere. Thermochim Acta. 2020;690:178666. https://doi.org/10.1016/j.tca.2020.178666.

    Article  CAS  Google Scholar 

  29. Ruan S, Wang C, Jie X, Yin F, Zhang Y, Yao Z. Kinetics of pyrite multi-step thermal decomposition in refractory gold sulphide concentrates. J Thermal Anal Calorim. 2022;147(5):3689–702. https://doi.org/10.1007/s10973-021-10761-y.

    Article  CAS  Google Scholar 

  30. Müsellim E, Tahir MH, Ahmad MS, Ceylan S. Thermokinetic and TG/DSC-FTIR study of pea waste biomass pyrolysis. Appl Thermal Eng. 2018;137:54–61. https://doi.org/10.1016/j.applthermaleng.2018.03.050.

    Article  CAS  Google Scholar 

  31. Becker M, Villiers JD, Bradshaw D. The flotation of magnetic and non-magnetic pyrrhotite from selected nickel ore deposits. Miner Eng. 2010;23(11–13):1045–52. https://doi.org/10.1016/j.mineng.2010.07.002.

    Article  CAS  Google Scholar 

  32. Shah SEKI. Oxidative roasting of covellite with minimal retardation from the CuO⋅CuSO4 film. Metall Trans. 1970;1:251–2156. https://doi.org/10.1007/bf02643428.

    Article  Google Scholar 

  33. Gadalla AM. Kinetics of thermal decomposition of CuSO4 · 5H2O to CuO. Int J Chem Kinet. 1984;6(16):655–68. https://doi.org/10.1002/kin.550160604.

    Article  Google Scholar 

  34. Ingraham TR, Marier P. The kinetics of the thermal decomposition of CoSO4 and Co3O4. Thermochim Acta. 1970;1(1):39–49. https://doi.org/10.1016/0040-6031(70)85027-4.

    Article  CAS  Google Scholar 

  35. Xiao R, Yang W, Cong X, Dong K, Xu J, Wang D, et al. Thermogravimetric analysis and reaction kinetics of lignocellulosic biomass pyrolysis. Energy. 2020;201:117537. https://doi.org/10.1016/j.energy.2020.117537.

    Article  CAS  Google Scholar 

  36. Manić N, Janković B, Pijović M, Waisi H, Dodevski V, Stojiljković D. Apricot kernel shells pyrolysis controlled by non-isothermal simultaneous thermal analysis (STA). J Thermal Anal Calorim. 2020;142(2):565–79. https://doi.org/10.1007/s10973-020-09307-5.

    Article  CAS  Google Scholar 

  37. Yang F, Liao L, Zhao C, Tian Y. Combined kinetic analysis of overlapping multistep thermal decomposition of 5-nitro-2,4,6-triaminopyrimidine -1,3-di-N-oxide (ICM-102). Thermochim Acta. 2020;690:178663. https://doi.org/10.1016/j.tca.2020.178663.

    Article  CAS  Google Scholar 

  38. Alves JLF, Da Silva JCG, Da Silva Filho VF, Alves RF, de Araujo Galdino WV, Andersen SLF. Determination of the bioenergy potential of brazilian Pine-Fruit shell via pyrolysis kinetics, thermodynamic study, and evolved gas analysis. Bioenerg Res. 2019;12(1):168–83. https://doi.org/10.1007/s12155-019-9964-1.

    Article  CAS  Google Scholar 

  39. Hidayat S, Bakar MSA, Ahmed A, Iryani DA, Hussain M, Jamil F. Comprehensive kinetic study of Imperata Cylindrica pyrolysis via Asym2sig deconvolution and combined kinetics. J Anal Appl Pyrolysis. 2021;156:105133. https://doi.org/10.1016/j.jaap.2021.105133.

    Article  CAS  Google Scholar 

  40. Mumbach GD, Alves JLF, Da Silva JCG, De Sena RF, Marangoni C, Machado RAF. Thermal investigation of plastic solid waste pyrolysis via the deconvolution technique using the asymmetric double sigmoidal function: determination of the kinetic triplet, thermodynamic parameters, thermal lifetime and pyrolytic oil composition for clean energy recovery. Energ Convers Manage. 2019;200: 112031. https://doi.org/10.1016/j.enconman.2019.112031.

    Article  CAS  Google Scholar 

  41. Jamieson HE, Walker SR, Parsons MB. Mineralogical characterization of mine waste. Appl Geochem. 2015;57:85–105. https://doi.org/10.1016/j.apgeochem.2014.12.014.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China (2019YFC1908401), the National Natural Science Foundation of China (52034002, U1802253), and the Fundamental Research Funds for the Central Universities (FRF-TT-19-001).

Author information

Authors and Affiliations

Authors

Contributions

WY contributed to investigation, writing—review and editing, formal analysis, resources. XL contributed to investigation, conceptualization, writing—original draft. YL contributed to validation, visualization. BM contributed to conceptualization, writing—review and editing, project administration. HW contributed to formal analysis, resources, writing—review and editing. XJ contributed to conceptualization, visualization. Chengyan Wang contributed to project administration, funding acquisition and supervision.

Corresponding authors

Correspondence to Xiang Li or Baozhong Ma.

Ethics declarations

Competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 577 kb)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, W., Li, X., Liu, Y. et al. Thermal roasting behavior and kinetics of African cobalt-rich copper sulfide ore in air atmosphere. J Therm Anal Calorim 147, 13469–13481 (2022). https://doi.org/10.1007/s10973-022-11628-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-022-11628-6

Keywords

Navigation