Skip to main content
Log in

Sunset Yellow: physical, thermal and bioactive properties of the widely employed food, pharmaceutical and cosmetic orange azo-dye material

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Sunset Yellow (E110) is an azoic dye synthetized from aromatic hydrocarbons, which is used to improve the physical–chemical properties of food products and their conservation; its chemical formula is C16H10N2Na2O7S2. Here, in order to characterize this azoic dye in powder and solution form, five spectral techniques were employed: Fourier Transform Infrared (FTIR), UV–Vis, Raman, Laser fluorescence and Terahertz (THz) spectroscopy. The Sunset Yellow’s morphology, structure and its chemical composition were studied by scanning electron microscopy (SEM), X-ray diffraction and energy-dispersive X-ray spectroscopy (EDXS). The thermal behaviour of Sunset Yellow was studied in correlation with its physical (refractive index, electric susceptivity, optical anisotropy) and chemical (acidity) properties. Thermal analysis effectuated in air indicates the evaporation of absorbed and physically bonded water up to 188 °C, after which the material possesses thermal stability up to 330 °C. The oxidative decomposition takes place in four exothermic steps of which the strongest between 510 and 643 °C develops a heat of 4519.6 J g−1; at 913 °C, a residue of 31.77% is obtained. The study of optical properties of Sunset Yellow shows that the refractive indexes are decreasing when the temperature of the solution increases. The optical anisotropy of Sunset Yellow was studied under polarized light at room temperature. Sunset Yellow exhibits the phenomenon of birefringence on resulted crystallites by drying and crystallization at RT from aqueous solutions with concentrations of 1% and 5%. THz spectroscopy identified the THz spectral “signature” of Sunset Yellow at a few wavelengths. Sunset Yellow has biophysical properties when interacting with proteins (bovine serum albumin (BSA) and collagen). The biological properties of Sunset Yellow were observed through its antioxidant activity and phytotoxicity; while the antioxidant activity is proportional with increasing its concentration, the phytotoxicity study indicates that the Sunset Yellow does not present wheat (Triticum aestivum) growth phytotoxicity at low concentrations (when treating with aqueous solutions of 0.01–0.05%, it could increase its resistance to drought conditions), but at concentrations of 0.25% or higher, there are negative changes in wheat growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. EFSA Panel on Food Additives and Nutrient Sources added to Food (ANS). Scientific opinion on the re-evaluation of Sunset Yellow FCF (E 110) as a food additive on request from the European Commission. EFSA J. 2009;7:1330.

    Article  Google Scholar 

  2. EFSA Panel on Food Additives and Nutrient Sources added to Food (ANS). Reconsideration of the temporary ADI and refined exposure assessment for Sunset Yellow FCF (E 110). EFSA J. 2014;12:3765.

    Article  Google Scholar 

  3. König J. Food colour additives of synthetic origin, in Colour Additives for Foods and Beverages. Woodhead Publishing Cambridge; 2015.

    Google Scholar 

  4. Codex Alimentarius Commission. Class Names and the International Numbering System for food additives CAC/GL 36–1989. Codex Alimentarius FAO/WHO; 2018.

  5. Compendium of food additive specifications. Food and Agriculture Organization and World Health Organization. Rome; 2016.

  6. Regulation (EU) No 1129/2011 of 11 November 2011 amending Annex II to Regulation (EC) No 1333/2008 of the European Parliament and of the Council by establishing a Union list of food additives. OJ L 295; 2011.

  7. https://pubchem.ncbi.nlm.nih.gov/compound/Sunset Yellow. Accessed at 28 June 2019.

  8. Vlase L, Muntean D, Cobzac SC, Filip L. Development and validation of an HPLC-UV method for determination of synthetic food colorants. Rev Roum Chim. 2014;59:719–25.

    Google Scholar 

  9. Pagacikova D, Lehotay J. Determination of synthetic colors in meat products using high-performance liquid chromatography with photodiode array detector. J Liq Chromatogr Relat Technol. 2015;38:579–83.

    Article  CAS  Google Scholar 

  10. Rovina K, Acung LA, Siddiquee S, et al. Extraction and analytical methods for determination of Sunset Yellow (E110)—a review. Food Anal Methods. 2017;10:773–87.

    Article  Google Scholar 

  11. Vlase T, Vlase G, Modra D, Doca N. Thermal behaviour of some industrial and food dyes. J Therm Anal Calorim. 2007;88:389–93.

    Article  CAS  Google Scholar 

  12. Constantinescu C, Morintale E, Emandi A, Dinescu M, Rotaru P. Thermal and microstructural analysis of Cu(II) 2,20-dihydroxy azobenzene and thin films deposition by MAPLE technique. J Therm Anal Calorim. 2011;104:707–16.

    Article  CAS  Google Scholar 

  13. Moanta A, Ionescu C, Rotaru P, Socaciu M, Harabor A. Structural characterization, thermal investigation, and liquid crystalline behavior of 4-[(4-chlorobenzyl) oxy]-3, 4′-dichloroazobenzene. J Therm Anal Calorim. 2010;102:1079–86.

    Article  CAS  Google Scholar 

  14. Gur M, Kocaokutgen H, Tas M. Synthesis, spectral, and thermal characterisations of some azo-ester derivatives containing a 4-acryloyloxy group. Dyes Pigments. 2007;72:101–8.

    Article  Google Scholar 

  15. Rotaru A, Brătulescu G, Rotaru P. Thermal analysis of azoic dyes; Part I. Non-isothermal decomposition kinetics of [4-(4-chlorobenzyloxy)-3-methylphenyl](p-tolyl)diazene in dynamic air atmosphere. Thermochim Acta. 2009;489:63–9.

    Article  CAS  Google Scholar 

  16. Moanta A, Ionescu C, Dragoi M, Tutunaru B, Rotaru P. A new azo-ester: 4-(phenyldiazenyl)phenyl benzene sulfonate—spectral, thermal, and electrochemical behavior and its antimicrobial activity. J Therm Anal Calorim. 2015;120:1151–61.

    Article  CAS  Google Scholar 

  17. Moanta A, Samide A, Rotaru P, Ionescu C, Tutunaru B. Synthesis and characterization of novel furoate azodye using spectral and thermal methods of analysis. J Therm Anal Calorim. 2015;119:1039–45.

    Article  Google Scholar 

  18. Rotaru A, Jurca B, Moanta A, Salageanu I, Segal E. Kinetic study of the thermal decomposition of some aromatic ortho-chlorinated azomonoethers. 1 Decomposition of 4-[(2-chlorobenzyl)oxi]-4′-triflouromethyl-azobenzene. Rev Roum Chim. 2006;51:373–8.

    CAS  Google Scholar 

  19. Rotaru A, Dumitru M. Thermal behaviour of CODA azoic dye liquid crystal and nanostructuring by drop cast and spin coating techniques. J Therm Anal Calorim. 2017;127:21–32.

    Article  CAS  Google Scholar 

  20. Rotaru A, Constantinescu C, Rotaru P, Moanţă A, Dumitru M, Socaciu M, Dinescu M, Segal E. Thermal analysis and thin films deposition by matrix assisted pulsed laser evaporation of a 4CN type azomonoether. J Therm Anal Calorim. 2008;92:279–84.

    Article  CAS  Google Scholar 

  21. Rotaru A, Moanta A, Constantinescu C, Dumitru M, Manolea HO, Andrei A, Dinescu M. Thermokinetic study of CODA azoic liquid crystal and thin films deposition by matrix-assisted pulsed laser evaporation. J Therm Anal Calorim. 2017;128:89–105.

    Article  CAS  Google Scholar 

  22. Sela SK, Nayab-Ul-Hossain AKM, Hasan N, Zubair Hussain S, Sadam S. Surface modification and qualitative natural coloring of raw jute to reduce electrical resistance and induce anti-microbial properties. Appl Surf Sci Adv. 2020;1:100018.

    Article  Google Scholar 

  23. Rotaru A, Moanta A, Popa G, Rotaru P, Segal E. Thermal decomposition kinetics of some aromatic azomonoethers. Part IV. Non-isothermal kinetics of 2-allyl-4-((4-(4-methylbenzyloxy) phenyl) diazenyl)phenol in air flow. J Therm Anal Calorim. 2009;97:485–91.

    Article  CAS  Google Scholar 

  24. Rotaru A, Moanta A, Rotaru P, Segal E. Thermal decomposition kinetics of some aromatic azomonoethers. Part III. Non-isothermal study of 4-[(4-chlorobenzyl)oxy]-4′-chloroazobenzene in dynamic air atmosphere. J Therm Anal Calorim. 2009;95:161–6.

    Article  CAS  Google Scholar 

  25. Rotaru A, Kropidlowska A, Moanta A, Rotaru P, Segal E. Thermal decomposition kinetics of some aromatic azomonoethers. Part II. Non-isothermal study of three liquid crystals in dynamic air atmosphere. J Therm Anal Calorim. 2008;92:233–8.

    Article  CAS  Google Scholar 

  26. Leulescu M, Iacobescu G, Bojan M, Rotaru P. Ponceau 4R azoic red dye. Thermal behavior, optical anisotropy and terahertz spectroscopy study. J Therm Anal Calorim. 2019;138:2091–101.

    Article  CAS  Google Scholar 

  27. Rotaru A, Gosa M, Segal E. Isoconversional linear integral kinetics of the non-isothermal evaporation of 4-[(4-chlorobenzyl)oxy]-4′-trifluoromethyl-azobenzene. Stud Univ Babes-Bolyai Chem. 2011;54:185–92.

    Google Scholar 

  28. Rotaru A. Discriminating within the kinetic models for heterogeneous processes of materials by employing a combined procedure under TKS-SP 2.0 software. J Therm Anal Calorim. 2016;126:919–32.

    Article  CAS  Google Scholar 

  29. Kucerik J, David J, Weiter M, Vala M, Vynuchal J, Ouzzane I, Salyk O. Stability and physical structure test of piperidyl and morpholinyl derivatives of diphenyl-diketo-pyrrolopyrroles (DPP). J Therm Anal Calorim. 2012;108:467–73.

    Article  CAS  Google Scholar 

  30. Qiu J, Tang B, Ju B, Xu Y, Zhang S. Stable diazonium salts of weakly basic amines—Convenient reagents for synthesis of disperse azo dyes. Dyes Pigments. 2017;136:63–9.

    Article  CAS  Google Scholar 

  31. Moanta A. Organic chemistry and pollution. Craiova: SITECH House; 2009. p. 78–86.

    Google Scholar 

  32. Suzuki Y, Horie M, Okamoto Y, Kurose Y, Maeda S. Thermal and optical properties of metal azo dyes for digital video disc-recordable discs. Jpn J Appl Phys. 1998;37:2084–8.

    Article  CAS  Google Scholar 

  33. El-Sonbati AZ, Diab MA, El-Bindary AA, Shoair AF, Hussein MA, El-Boz RA. Spectroscopic, thermal, catalytic and biological studies of Cu(II) azo dye complexes. J Mol Struct. 2017;1141:186–203.

    Article  CAS  Google Scholar 

  34. Leulescu M, Rotaru A, Moanţă A, Iacobescu G, Pălarie I, Cioateră N, Popescu M, Criveanu MC, Morîntale E, Bojan M, Rotaru P. Azorubine: physical, thermal and bioactive properties of the widely employed food, pharmaceutical and cosmetic red azo dye material. J Therm Anal Calorim. 2021;143:3945–67.

    Article  CAS  Google Scholar 

  35. Fioru L, Langfeld HW, Tarabasanu-Mihaila C. Azo dyes. Technical Publishing House; 1981.

    Google Scholar 

  36. Kazem-Rostami M. Factors influencing the thermal stability of azo and bisazo compounds. J Therm Anal Calorim. 2020;140:613–23.

    Article  CAS  Google Scholar 

  37. Jianu D, Soare B, Matei L. Microscopic optical properties of transparent minerals in polarized light. old.unibuc.ro. 2007. Accessed at June 2018.

  38. https://www.microscopyu.com/techniques/polarized-light/principles-of-birefringence. Accessed at Oct 2018.

  39. Pălărie I. Spectroscopy. Practical work. University of Craiova Publishing House; 2004.

    Google Scholar 

  40. Palarie I, Varut MC, Chirigiu LME. Method of determination of rivanol by laser induced fluoroscence. Rev Chim Buchar. 2019;70:140–2.

    Article  CAS  Google Scholar 

  41. Bojan M, Damian V, Fleaca C, Vasile T. Terahertz spectroscopic investigations of hazardous substances. Proc SPIE Proc Ser. 2016;10010:6.

    Google Scholar 

  42. Leulescu M, Rotaru A, Pălarie I, Moanţă A, Cioateră N, Popescu M, Morîntale E, Bubulică MV, Florian G, Hărăbor A, Rotaru P. Tartrazine: physical, thermal and biophysical properties of the most widely employed synthetic yellow food—colouring azo dye. J Therm Anal Calorim. 2018;134:209–31.

    Article  CAS  Google Scholar 

  43. Leulescu M, Pălarie I, Moanţă A, Cioateră N, Popescu M, Morîntale E, Văruţ MC, Rotaru P. Brown HT: physical, thermal and biophysical properties of the food azo dye. J Therm Anal Calorim. 2019;136:1249–68.

    Article  CAS  Google Scholar 

  44. Peica N. Vibrational spectroscopy and density functional theory calculations on biological molecules. Dissertation. Würzburg; 2006.

  45. Socrates G. Infrared and Raman characteristic group frequencies: tables and charts. 3rd ed. Chichester: Wiley; 2004.

    Google Scholar 

  46. http://www.spectroscopictools-science-and-funde/tools/. Accessed at 24 Oct 2017.

  47. Atkins PW, de Paula J. Physical chemistry for the life sciences. New York: W. H. Freeman and Company; 2006.

    Google Scholar 

  48. Silverstein RM, Webster FX, Kiemle DJ. Spectrometric identification of organic compounds. New York: Wiley; 2005.

    Google Scholar 

  49. https://pubchem.ncbi.nlm.nih.gov/compound/Sodium-1-naphthalenesulfonate#section=FTIR-Spectra. Accessed at 19 Apr 2019.

  50. https://pubchem.ncbi.nlm.nih.gov/compound/Sunset-Yellow-FCF#section=Spectral-Information. Accessed at 28 June 2019.

  51. https://www.nist.gov/pml/atomic-spectra-database. Accessed at 17 Apr 2019.

  52. https://physics.nist.gov/PhysRefData/ASD/lines_form.html. Accessed at 17 Apr 2019.

  53. Shen YC. Terahertz pulsed spectroscopy and imaging for pharmaceutical applications: a review. Int J Pharm. 2017;417:48–60.

    Article  Google Scholar 

  54. Zhong S, Shen YC, Ho L, Mayd RK, Zeitler JA, Evans M, Taday PF, Pepper M, Rades T, Gordon KC, Müller R, Kleinebudde P. Non-destructive quantification of pharmaceutical tablet coatings using terahertz pulsed imaging and optical coherence tomography. Opt Lasers Eng. 2011;49:361–5.

    Article  Google Scholar 

  55. Lin H, Dong Y, Shen Y, Zeitler JA. Quantifying pharmaceutical film coating with optical coherence tomography and terahertz pulsed imaging: an evaluation. Wiley Online Library; 2015.

    Book  Google Scholar 

  56. Zeitler JA, Shen Y, Baker C, Taday PF, Pepper M, Rades T. Analysis of coating structures and interfaces in solid oral dosage forms by three dimensional Terahertz Pulsed Imaging. Wiley InterScience; 2006.

    Google Scholar 

  57. Gowen AA, O’Sullivan C, O’Donnell CP. Terahertz time domain spectroscopy and imaging: emerging techniques for food process monitoring and quality control. Trends Food Sci Technol. 2012;25:40–6.

    Article  CAS  Google Scholar 

  58. Parrott EPJ, Sun Y, Pickwell-MacPherson E. Terahertz spectroscopy: its future role in medical diagnoses. J Mol Struct. 2011;1006:66–76.

    Article  CAS  Google Scholar 

  59. Shen J, Wang G, Jiang D, Liang L, Xu X. Terahertz spectroscopic investigations of caffeine and 3-acetylmorphine. Int J Light Electron Opt. 2010;121:1712–6.

    Article  CAS  Google Scholar 

  60. Nishikiori R, Yamaguchi M, Takano K, Enatsu T, Tani M, de Silva UC, Kawashita N, Taragi T, Morimoto S, Hangyo M, Kawase M. Application of partial least square on quantitative analysis of l-, d-, and dl-tartaric acid by terahertz absorption spectra. Chem Pharm Bull. 2008;56:305–7.

    Article  CAS  Google Scholar 

  61. Segal E, Fătu D. Introduction to nonisothermal kinetics. Bucharest: Academy Publishing House; 1983.

    Google Scholar 

  62. Brown ME. Introduction to thermal analysis. Techniques and applications. New York: Kluwer Academic Publishers; 2004.

    Book  Google Scholar 

  63. Brown ME. Handbook of thermal analysis and calorimetry, vol. 1. New York: Elsevier Science; 1998.

    Google Scholar 

  64. Rotaru P. Thermal properties and thermal processes of materials. Craiova: SITECH Publishing House; 2010.

    Google Scholar 

  65. Rotaru A, Moanta A, Salageanu I, Budrugeac P, Segal E. Thermal decomposition kinetics of some aromatic azomonoethers. Part I. Decomposition of 4-[(4-chlorobenzyl)oxy]-40-nitroazobenzene. J Therm Anal Calorim. 2007;87:395–400.

    Article  CAS  Google Scholar 

  66. Ion I, Ion A. Analytical chemistry. Chemical equilibria. Bucharest: Printech Publishing House; 1999.

    Google Scholar 

  67. Bhusan Jena B, Satish L, Sekhara Mahanta C, Ranjan Swain B, Sahoo H, Dash BP, Satapathy R. Interaction of carborane-appended trimer with bovine serum albumin: a spectroscopic investigation. Inorg Chim Acta. 2019;491:52–8.

    Article  Google Scholar 

  68. Wen MG, Zhang XB, Tian JN, Ni SH, Bian HD, Huang YL, Liang H. Binding interaction of xanthoxylin with bovine serum albumin. J Solut Chem. 2009;38:391–401.

    Article  CAS  Google Scholar 

  69. https://toxnet.nlm.nih.gov/. Accessed at 19 Apr 2019

  70. Pellegrini D, Corsi M, Bonanni M, Bianchini R, D’Ulivo A, Bramanti E. Study of the interaction between collagen and naturalized and commercial dyes by Fourier transform infrared spectroscopy and thermogravimetric analysis. Dye Pigments. 2015;116:65–73.

    Article  CAS  Google Scholar 

  71. Ahlstrom LH, Sparr Eskilsson C, Bjorklund E. Determination of banned azo dyes in consumer goods. Trends Anal Chem. 2005;24:49–56.

    Article  CAS  Google Scholar 

  72. Golka K, Kopps S, Myslak ZW. Carcinogenicity of azo colorants: influence of solubility and bioavailability. Toxicol Lett. 2004;151:203–10.

    Article  CAS  PubMed  Google Scholar 

  73. Puntener A, Page C. European Ban on certain azo dyes. Qual Environ. 2004; 1–3. http://www.dyediet.com/wp-content/uploads/2012/01/European-Ban-on-certain-Azo-Dyes.pdf

  74. Fragoso CT, Battisti R, Miranda C, de Jesus PC. Kinetic of the degradation of CI Food Yellow 3 and CI Food Yellow 4 azo dyes by the oxidation with hydrogen peroxide. J Mol Catal A Chem. 2009;301:93–7.

    Article  CAS  Google Scholar 

  75. Parisi F. Adsorption and separation of crystal violet, Cerium(III) and Lead(II) by means of a multi-step strategy based on K10-montmorillonite. Minerals. 2020;10:466.

    Article  CAS  Google Scholar 

  76. Parisi F, Lazzara G, Merli M, Milioto S, Princivalle F, Sciascia L. Simultaneous removal and recovery of metal ions and dyes from wastewater through montmorillonite clay mineral. Nanomaterials. 2019;9:1699.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Mallikarjuna NM, Keshavayya J, Maliyappa MR, Shoukat Ali RA, Venkatesh T. Synthesis, characterization, thermal and biological evaluation of Cu(II), Co(II) and Ni(II) complexes of azo dye ligand containing sulfamethaxazole moiety. J Mol Struct. 2018;1165:28–36.

    Article  CAS  Google Scholar 

  78. Samide A, Tutunaru B, Moanţă A, Ionescu C, Tigae C, Vladu AC. A Study of the surface protective layer formedon carbon steel in water-dioxane solution containing 0.15 M NaCl in presence of an azo dye with antimicrobial activity. Int J Electrochem Sci. 2015;10:4637–53.

    CAS  Google Scholar 

  79. Tutunaru B, Tigae C, Spînu C, Prunaru I. Spectrophotometry and electrochemistry of Brilliant Blue FCF in aqueous solution of NaX. Int J Electrochem Sci. 2017;12:396–412.

    Article  CAS  Google Scholar 

  80. Carabet CA, Moanta A, Palarie I, Iacobescu G, Rotaru A, Leulescu M, Popescu M, Rotaru P. Physical, thermal and biological properties of yellow dyes with two azodiphenylether groups of anthracene. Molecules. 2020;25:5757.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Folin O, Ciocalteu V. On tyrosine and tryptophane determinations in proteins. J Biol Chem. 1927;73:627.

    Article  CAS  Google Scholar 

  82. Singelton VR, Orthifer R, Lamuela-Raventos RM. Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Method Enzymol. 1999;299:152–78.

    Article  Google Scholar 

  83. Wojdyłoa A, Oszmiańskia J, Czemerysb R. Antioxidant activity and phenolic compounds in 32 selected herbs. Food Chem. 2007;105:940–9.

    Article  Google Scholar 

  84. Büyüktuncel E, Porgali E, Çolak C. Comparison of total phenolic content and total antioxidant activity in local red wines determined by spectrophotometric methods. Food Nutr Sci. 2014;5:1660–7.

    Google Scholar 

  85. Frankel E, Meyer A. The problems of using one-dimensional methods to evaluate multifunctional food and biological antioxidants. J Sci Food Agric. 2000;80:1925–41.

    Article  CAS  Google Scholar 

  86. Huang D, Ou B, Prior R. The chemistry behind antioxidant capacity assays. J Agric Food Chem. 2005;53:1841–56.

    Article  CAS  PubMed  Google Scholar 

  87. https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/phytotoxicity. Accessed at 03 July 2019.

  88. https://en.wikipedia.org/wiki/Phytotoxicity. Accessed at 03 July 2019.

  89. https://www.iso.org/standard/51388.html. Accessed at 03 July 2019.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrei Rotaru.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leulescu, M., Pălărie, I., Rotaru, A. et al. Sunset Yellow: physical, thermal and bioactive properties of the widely employed food, pharmaceutical and cosmetic orange azo-dye material. J Therm Anal Calorim 148, 1265–1287 (2023). https://doi.org/10.1007/s10973-022-11617-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-022-11617-9

Keywords

Navigation