Skip to main content
Log in

Thermal analysis of a novel cycle for battery pre-warm-up and cool down for real driving cycles during different seasons

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The temperature range of 25–35 °C provides the most suitable conditions for the best performance of batteries. This study introduced an advanced new thermal management system for batteries designed based on thermoelectric elements and radiators. The battery system is modeled during a real driving cycle. The simulation results showed that the temperature pattern of the battery surface followed a fluctuation pattern before reaching a steady-state condition in cold seasons. A similar model for hot months followed the velocity profile of the vehicle. Besides, the temperature profile was linear with a positive slope in hot seasons for the battery charge time. The surface temperature of the cold plate of the thermoelectric elements in cold seasons reduced with velocity from the cold to hot season while following the velocity profile of the vehicle in hot seasons, with a positive slope and linear trend. Concerning the surface temperature of the hot plate of the thermoelectric elements, the profile was linear and incremental. Furthermore, the increasing trend experienced some fluctuations that declined from the cold to hot season, while there were no fluctuations for the temperatures above 25 °C. In the cold seasons of the year, as the temperature increases from 6.9 to 15.5 °C, the oscillating state decreases for 500 s, and when it increases again to 21.5 °C, the time interval decreases for 100 s. Also, for thermal management in the hot season, kfan is reduced from 0.81 to 0.21 W K−1 to achieve balance and optimal operation of thermoelectric elements. The same fluctuation trend applies to all the results obtained from the energy stored in the battery diagram. It can be concluded that the newly introduced thermal management system can maintain the battery temperature at an appropriate temperature range. The results followed similar patterns for various thermal conditions wherein different parameters of the thermal management system were examined. The new cycle introduced using the fuzzy logic algorithm and the PID controller could manifest proper efficiency for real applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

AAC:

Active air cooling

BEV:

Battery electric vehicle

BTMS:

Battery thermal management system

CFD:

Computational fluid dynamics

COP:

Coefficient of performance

CSGP:

Composite silica gel plate

EV:

Electric vehicle

FMHPA:

Flat micro-heat pipe array

FTP:

Federal test procedure

HEV:

Hybrid electric vehicle

HFE:

Hydrofluoroether

HPPICB:

Heat pipe-phase change material internal cooling battery

HSP:

Heat spreading plate

LC:

Liquid-cooled

LIB:

Lithium-ion battery

LN:

Liquid nitrogen

MHPA:

Micro-heat pipe array

NMHPA:

No U-shaped micro-heat pipe array

NTU:

Number of transfer units

PAC:

Passive air cooling

PCM:

Phase change material

PID:

Proportional integral derivative

PTC:

Positive temperature coefficient

SEI:

Solid electrolyte interphase

SOC:

State of charge

SPM:

Single-particle model

TMS:

Thermal management system

TR:

Thermal runaway

UDDS:

Urban dynamometer driving schedule

A :

Surface area (m2)

C D :

Aerodynamic drag factor (−)

C max :

Maximum heat capacity of the two fluids in the heat exchanger (W K−1)

C min :

Minimum heat capacity of the two fluids in the heat exchanger (W K−1)

C p :

Specific heat capacity (kJ kg−1 K−1)

C*:

Heat capacity ratio of the two fluids in the heat exchanger (−)

f :

Friction coefficient (−)

F :

Faraday’s constant (C mol−1)

g :

Gravitational constant (m s−2)

h :

Convective heat transfer coefficient (W m−2 K−1)

I :

Electrical current (A)

k :

Heat transfer coefficient (W K−1)

k eff :

Effective reaction rate constant (m2.5 mol−0.5 s−1)

m :

Mass of the vehicle (kg)

\(\dot{m}\) :

Mass flow rate (kg s−1)

NTU:

Number of transfer units (−)

P :

Total power of the vehicle's battery (W)

q :

Heat that is exchanged in the heat exchanger (W)

Q :

Exchanged heat (kJ)

q max :

Maximum heat that can be exchanged in the heat exchanger (W)

R :

Universal gas constant (kJ mole−1 K−1)

R p :

Electrical resistance of Peltier elements (Ω)

u :

Velocity of the vehicle (m s−1)

U :

Total heat transfer coefficient (W m−2 K−1)

U i :

Open-circuit voltage (V)

t :

Time (s)

T :

Temperature (K)

t + :

Transference number (−)

V :

Volume (m3)

x :

Direction of the computational domain (m)

\({\Phi }\) :

Electrical potential (V)

\(\alpha\) :

Seebeck coefficient (V K−1)

\(\rho\) :

Density (kg m−3)

\(\varepsilon\) :

Heat exchanger efficiency (−)

\({\text{cos}}\left( \alpha \right)\) :

Slope of the ground for the vehicle movement (−)

\(\delta\) :

Mechanical efficiency of the vehicle (−)

\(\sigma\) :

Electrical conductivity of the solid phase (S m−1)

\(\kappa\) :

Electrical conductivity of the electrolyte phase (S m−1)

acc:

Ambient and radiator convection

acf:

Ambient cool face

bat:

Battery

cf:

Cool face

cond:

Conductive

conv:

Convective

conva:

Ambient convection

convr:

Radiator convection

e:

Electrolyte

eff:

Effective

hf:

Hot face

i:

Anode or Cathode

j:

Joule

pcf:

Peltier cool face

phf:

Peltier hot face

rad:

Radiator

ref:

Reference state

rf:

Radiator face

rhf:

Radiator hot face

s:

Solid

References

  1. Chen F, Huang R, Wang C, Yu X, Liu H, Wu Q, Qian K, Bhagat R. Air and PCM cooling for battery thermal management considering battery cycle life. Appl Therm Eng. 2020;173: 115154. https://doi.org/10.1016/j.applthermaleng.2020.115154.

    Article  CAS  Google Scholar 

  2. Akbarzadeh M, Jaguemont J, Kalogiannis T, Karimi D, He J, Jin L, Xie P, Van Mierlo J, Berecibar M. A novel liquid cooling plate concept for thermal management of lithium-ion batteries in electric vehicles. Energy Convers Manag. 2021;231: 113862. https://doi.org/10.1016/j.enconman.2021.113862.

    Article  Google Scholar 

  3. Liu H, Ahmad S, Shi Y, Zhao J. A parametric study of a hybrid battery thermal management system that couples PCM/copper foam composite with helical liquid channel cooling. Energy. 2021;231: 120869. https://doi.org/10.1016/j.energy.2021.120869.

    Article  CAS  Google Scholar 

  4. Dong F, Cheng Z, Zhu J, Song D, Ni J. Investigation and optimization on cooling performance of a novel double helix structure for cylindrical lithium-ion batteries. Appl Therm Eng. 2021;189: 116758. https://doi.org/10.1016/j.applthermaleng.2021.116758.

    Article  CAS  Google Scholar 

  5. Huang Z, Liu P, Duan Q, Zhao C, Wang Q. Experimental investigation on the cooling and suppression effects of liquid nitrogen on the thermal runaway of lithium ion battery. J Power Source. 2021;495: 229795. https://doi.org/10.1016/j.jpowsour.2021.229795.

    Article  CAS  Google Scholar 

  6. Jilte R, Kumar R, Ahmadi MH. Cooling performance of nanofluid submerged vs. nanofluid circulated battery thermal management systems. J Clean Prod. 2019;240: 118131. https://doi.org/10.1016/j.jclepro.2019.118131.

    Article  CAS  Google Scholar 

  7. Tang X, Guo Q, Li M, Wei C, Pan Z, Wang Y. Performance analysis on liquid-cooled battery thermal management for electric vehicles based on machine learning. J Power Source. 2021;494: 229727. https://doi.org/10.1016/j.jpowsour.2021.229727.

    Article  CAS  Google Scholar 

  8. Kalkan O, Celen A, Bakirci K. Experimental and numerical investigation of the LiFePO4 battery cooling by natural convection. J Energy Storage. 2021;40: 102796. https://doi.org/10.1016/j.est.2021.102796.

    Article  Google Scholar 

  9. Li K, Yan J, Chen H, Wang Q. Water cooling based strategy for lithium ion battery pack dynamic cycling for thermal management system. Appl Therm Eng. 2018;132:575–85. https://doi.org/10.1016/j.applthermaleng.2017.12.131.

    Article  CAS  Google Scholar 

  10. Liu Z, Huang J, Cao M, Jiang G, Yan Q, Hu J. Experimental study on the thermal management of batteries based on the coupling of composite phase change materials and liquid cooling. Appl Therm Eng. 2021;185: 116415. https://doi.org/10.1016/j.applthermaleng.2020.116415.

    Article  CAS  Google Scholar 

  11. Lv Y, Yang X, Zhang G. Durability of phase-change-material module and its relieving effect on battery deterioration during long-term cycles. Appl Therm Eng. 2020;179: 115747. https://doi.org/10.1016/j.applthermaleng.2020.115747.

    Article  CAS  Google Scholar 

  12. Niu J, Xie N, Zhong Y, Fang Y, Zhang Z. Numerical analysis of battery thermal management system coupling with low-thermal-conductive phase change material and liquid cooling. J Energy Storage. 2021;39: 102605. https://doi.org/10.1016/j.est.2021.102605.

    Article  Google Scholar 

  13. Luerssen C, Gandhi O, Reindl T, Sekhar C, Cheong D. Life cycle cost analysis (LCCA) of PV-powered cooling systems with thermal energy and battery storage for off-grid applications. Appl Energy. 2020;273: 115145. https://doi.org/10.1016/j.apenergy.2020.115145.

    Article  Google Scholar 

  14. Ping P, Zhang Y, Kong D, Du J. Investigation on battery thermal management system combining phase changed material and liquid cooling considering non-uniform heat generation of battery. J Energy Storage. 2021;36: 102448. https://doi.org/10.1016/j.est.2021.102448.

    Article  Google Scholar 

  15. Tousi M, Sarchami A, Kiani M, Najafi M, Houshfar E. Numerical study of novel liquid-cooled thermal management system for cylindrical Li-ion battery packs under high discharge rate based on AgO nanofluid and copper sheath. J Energy Storage. 2021;41: 102910. https://doi.org/10.1016/j.est.2021.102910.

    Article  Google Scholar 

  16. Mo X, Zhi H, Xiao Y, Hua H, He L. Topology optimization of cooling plates for battery thermal management. Int J Heat Mass Transf. 2021;178: 121612. https://doi.org/10.1016/j.ijheatmasstransfer.2021.121612.

    Article  Google Scholar 

  17. Singh LK, Mishra G, Sharma A, Gupta AK. A numerical study on thermal management of a lithium-ion battery module via forced-convective air cooling. Int J Refrig. 2021;131:218–34. https://doi.org/10.1016/j.ijrefrig.2021.07.031.

    Article  Google Scholar 

  18. Liang L, Zhao Y, Diao Y, Ren R, Jing H. Inclined U-shaped flat microheat pipe array configuration for cooling and heating lithium-ion battery modules in electric vehicles. Energy. 2021;235: 121433. https://doi.org/10.1016/j.energy.2021.121433.

    Article  Google Scholar 

  19. Liang L, Zhao Y, Diao Y, Ren R, Zhang L, Wang G. Optimum cooling surface for prismatic lithium battery with metal shell based on anisotropic thermal conductivity and dimensions. J Power Source. 2021;506: 230182. https://doi.org/10.1016/j.jpowsour.2021.230182.

    Article  CAS  Google Scholar 

  20. Ren R, Zhao Y, Diao Y, Liang L, Jing H. Active air cooling thermal management system based on U-shaped micro heat pipe array for lithium-ion battery. J Power Source. 2021;507: 230314. https://doi.org/10.1016/j.jpowsour.2021.230314.

    Article  CAS  Google Scholar 

  21. Tan X, Lyu P, Fan Y, Rao J, Ouyang K. Numerical investigation of the direct liquid cooling of a fast-charging lithium-ion battery pack in hydrofluoroether. Appl Therm Eng. 2021;196: 117279. https://doi.org/10.1016/j.applthermaleng.2021.117279.

    Article  CAS  Google Scholar 

  22. Safdari M, Ahmadi R, Sadeghzadeh S. Numerical and experimental investigation on electric vehicles battery thermal management under New European Driving Cycle. Appl Energy. 2022;315: 119026. https://doi.org/10.1016/j.apenergy.2022.119026.

    Article  CAS  Google Scholar 

  23. Lyu C, Song Y, Yang D, Wang W, Zhu S, Ge Y, Wang L. Surrogate model of liquid cooling system for lithium-ion battery using extreme gradient boosting. Appl Therm Eng. 2022. https://doi.org/10.1016/j.applthermaleng.2022.118675.

    Article  Google Scholar 

  24. Boonma K, Mesgarpour M, NajmAbad JM, Alizadeh R, Mahian O, Dalkılıç AS, Ahn HS, Wongwises S. Prediction of battery thermal behaviour in the presence of a constructal theory-based heat pipe (CBHP): a multiphysics model and pattern-based machine learning approach. J Energy Storage. 2022;48: 103963. https://doi.org/10.1016/j.est.2022.103963.

    Article  Google Scholar 

  25. Rui X, Feng X, Wang H, Yang H, Zhang Y, Wan M, Wei Y, Ouyang M. Synergistic effect of insulation and liquid cooling on mitigating the thermal runaway propagation in lithium-ion battery module. Appl Therm Eng. 2021;199: 117521. https://doi.org/10.1016/j.applthermaleng.2021.117521.

    Article  Google Scholar 

  26. Kong D, Peng R, Ping P, Du J, Chen G, Wen J. A novel battery thermal management system coupling with PCM and optimized controllable liquid cooling for different ambient temperatures. Energy Convers Manag. 2020;204: 112280. https://doi.org/10.1016/j.enconman.2019.112280.

    Article  Google Scholar 

  27. Ranjbaran YS, Haghparast SJ, Shojaeefard MH, Molaeimanesh GR. Numerical evaluation of a thermal management system consisting PCM and porous metal foam for Li-ion batteries. J Therm Anal Calorim. 2020;141:1717–39. https://doi.org/10.1007/s10973-019-08989-w.

    Article  CAS  Google Scholar 

  28. Mousavi S, Siavashi M, Zadehkabir A. A new design for hybrid cooling of Li-ion battery pack utilizing PCM and mini channel cold plates. Appl Therm Eng. 2021;197: 117398. https://doi.org/10.1016/j.applthermaleng.2021.117398.

    Article  CAS  Google Scholar 

  29. Kiani M, Omiddezyani S, Nejad AM, Ashjaee M, Houshfar E. Novel hybrid thermal management for Li-ion batteries with nanofluid cooling in the presence of alternating magnetic field: an experimental study. Case Stud Therm Eng. 2021;28: 101539. https://doi.org/10.1016/j.csite.2021.101539.

    Article  Google Scholar 

  30. Sarchami A, Najafi M, Imam A, Houshfar E. Experimental study of thermal management system for cylindrical Li-ion battery pack based on nanofluid cooling and copper sheath. Int J Therm Sci. 2022;171: 107244. https://doi.org/10.1016/j.ijthermalsci.2021.107244.

    Article  CAS  Google Scholar 

  31. Kiani M, Ansari M, Arshadi AA, Houshfar E, Ashjaee M. Hybrid thermal management of lithium-ion batteries using nanofluid, metal foam, and phase change material: an integrated numerical–experimental approach. J Therm Anal Calorim. 2020;141:1703–15. https://doi.org/10.1007/s10973-020-09403-6.

    Article  CAS  Google Scholar 

  32. Xu Y, Zhang H, Xu X, Wang X. Numerical analysis and surrogate model optimization of air-cooled battery modules using double-layer heat spreading plates. Int J Heat Mass Transf. 2021;176: 121380. https://doi.org/10.1016/j.ijheatmasstransfer.2021.121380.

    Article  Google Scholar 

  33. Yang Y, Chen L, Yang L, Du X. Numerical study of combined air and phase change cooling for lithium-ion battery during dynamic cycles. Int J Therm Sci. 2021;165: 106968. https://doi.org/10.1016/j.ijthermalsci.2021.106968.

    Article  CAS  Google Scholar 

  34. Youssef R, Hosen MS, He J, Jaguemont J, De Sutter L, Van Mierlo J, Berecibar M. Effect analysis on performance enhancement of a novel and environmental evaporative cooling system for lithium-ion battery applications. J Energy Storage. 2021;37: 102475. https://doi.org/10.1016/j.est.2021.102475.

    Article  Google Scholar 

  35. Zhang S, Luo J, Xu Y, Chen G, Wang Q. Thermodynamic analysis of a combined cycle of ammonia-based battery and absorption refrigerator. Energy. 2021;220: 119728. https://doi.org/10.1016/j.energy.2020.119728.

    Article  CAS  Google Scholar 

  36. Zhou Z, Lv Y, Qu J, Sun Q, Grachev D. Performance evaluation of hybrid oscillating heat pipe with carbon nanotube nanofluids for electric vehicle battery cooling. Appl Therm Eng. 2021;196: 117300. https://doi.org/10.1016/j.applthermaleng.2021.117300.

    Article  CAS  Google Scholar 

  37. Xu Y, Li X, Liu X, Wang Y, Wu X, Zhou D. Experiment investigation on a novel composite silica gel plate coupled with liquid-cooling system for square battery thermal management. Appl Therm Eng. 2021;184: 116217. https://doi.org/10.1016/j.applthermaleng.2020.116217.

    Article  CAS  Google Scholar 

  38. Yuan X, Tang A, Shan C, Liu Z, Li J. Experimental investigation on thermal performance of a battery liquid cooling structure coupled with heat pipe. J Energy Storage. 2020;32: 101984. https://doi.org/10.1016/j.est.2020.101984.

    Article  Google Scholar 

  39. Lei S, Shi Y, Chen G. Heat-pipe based spray-cooling thermal management system for lithium-ion battery: experimental study and optimization. Int J Heat Mass Transf. 2020;163: 120494. https://doi.org/10.1016/j.ijheatmasstransfer.2020.120494.

    Article  CAS  Google Scholar 

  40. Kirad K, Chaudhari M. Design of cell spacing in lithium-ion battery module for improvement in cooling performance of the battery thermal management system. J Power Source. 2021;481: 229016. https://doi.org/10.1016/j.jpowsour.2020.229016.

    Article  CAS  Google Scholar 

  41. Gou J, Liu W, Luo Y. The thermal performance of a novel internal cooling method for the electric vehicle battery: an experimental study. Appl Therm Eng. 2019;161: 114102. https://doi.org/10.1016/j.applthermaleng.2019.114102.

    Article  CAS  Google Scholar 

  42. Hekmat S, Bamdezh M, Molaeimanesh G. Hybrid thermal management for achieving extremely uniform temperature distribution in a lithium battery module with phase change material and liquid cooling channels. J Energy Storage. 2022;50: 104272. https://doi.org/10.1016/j.est.2022.104272.

    Article  Google Scholar 

  43. Lebrouhi B, Lamrani B, Ouassaid M, Abd-Lefdil M, Maaroufi M, Kousksou T. Low-cost numerical lumped modelling of lithium-ion battery pack with phase change material and liquid cooling thermal management system. J Energy Storage. 2022;54: 105293. https://doi.org/10.1016/j.est.2022.105293.

    Article  Google Scholar 

  44. Guo Z, Xu Q, Zhao S, Zhai S, Zhao T, Ni M. A new battery thermal management system employing the mini-channel cold plate with pin fins. Sustain Energy Technol Assess. 2022;51: 101993. https://doi.org/10.1016/j.seta.2022.101993.

    Article  Google Scholar 

  45. Singirikonda S, Obulesu YP. Adaptive secondary loop liquid cooling with refrigerant cabin active thermal management system for electric vehicle. J Energy Storage. 2022;50: 104624. https://doi.org/10.1016/j.est.2022.104624.

    Article  Google Scholar 

  46. Mesgarpour M, Mir M, Alizadeh R, Abad JMN, Borj EP. An evaluation of the thermal behaviour of a lithium-ion battery pack with a combination of pattern-based artificial neural networks (PBANN) and numerical simulation. J Energy Storage. 2022;47: 103920. https://doi.org/10.1016/j.est.2021.103920.

    Article  Google Scholar 

  47. Khalili H, Ahmadi P, Ashjaee M, Houshfar E. Nanofluid thermoelectric cooler based advanced battery thermal management system for battery degradation mitigation in real driving cycles. Int J Energy Res. 2022. https://doi.org/10.1002/er.8065.

    Article  Google Scholar 

  48. Torchio M, Magni L, Gopaluni RB, Braatz RD, Raimondo DM. LIONSIMBA: a matlab framework based on a finite volume model suitable for Li-ion battery design, simulation, and control. J Electrochem Soc. 2016;163:A1192–205. https://doi.org/10.1149/2.0291607jes.

    Article  CAS  Google Scholar 

  49. Shah RK, Sekulic DP. Fundamentals of heat exchanger design. Hoboken, NJ: John Wiley & Sons, Inc; 2003.

    Book  Google Scholar 

  50. Javani N, Dincer I, Naterer GF, Yilbas BS. Heat transfer and thermal management with PCMs in a Li-ion battery cell for electric vehicles. Int J Heat Mass Transf. 2014;72:690–703. https://doi.org/10.1016/j.ijheatmasstransfer.2013.12.076.

    Article  CAS  Google Scholar 

  51. Jiaqiang E, Yue M, Chen J, Zhu H, Deng Y, Zhu Y, Zhang F, Wen M, Zhang B, Kang S. Effects of the different air cooling strategies on cooling performance of a lithium-ion battery module with baffle. Appl Therm Eng. 2018;144:231–41. https://doi.org/10.1016/j.applthermaleng.2018.08.064.

    Article  Google Scholar 

  52. Bernardi D, Pawlikowski E, Newman J. A general energy balance for battery systems. J Electrochem Soc. 1985;132:5–12. https://doi.org/10.1149/1.2113792.

    Article  CAS  Google Scholar 

  53. Ramadass P, Haran B, Gomadam PM, White R, Popov BN. Development of first principles capacity fade model for li-ion cells. J Electrochem Soc. 2004;151:A196. https://doi.org/10.1149/1.1634273.

    Article  CAS  Google Scholar 

  54. Allafi W, Zhang C, Uddin K, Worwood D, Dinh TQ, Ormeno PA, Li K, Marco J. A lumped thermal model of lithium-ion battery cells considering radiative heat transfer. Appl Therm Eng. 2018;143:472–81. https://doi.org/10.1016/j.applthermaleng.2018.07.105.

    Article  Google Scholar 

  55. Bejan A. Convection heat transfer. Hoboken, NJ: John Wiley & Sons, Inc; 2013.

    Book  Google Scholar 

  56. Bergman TL, Lavine AS, Incropera FP, DeWitt DP. Introduction to heat transfer. Hoboken, NJ: John Wiley & Sons, Inc; 2011.

    Google Scholar 

  57. Huilcapi V, Herrero JM, Blasco X, Martínez-Iranzo M. Non-linear identification of a peltier cell model using evolutionary multi-objective optimization. IFAC-PapersOnLine. 2017;50:4448–53. https://doi.org/10.1016/j.ifacol.2017.08.372.

    Article  Google Scholar 

  58. Yin J, Jensen MK. Analytic model for transient heat exchanger response. Int J Heat Mass Transf. 2003;46:3255–64. https://doi.org/10.1016/S0017-9310(03)00118-2.

    Article  Google Scholar 

  59. Dincer I, Rosen MA, Ahmadi P. Optimization of energy systems. Chichester, West Sussex: John Wiley & Sons Ltd; 2017.

    Book  Google Scholar 

  60. Cao W, Zhao C, Wang Y, Dong T, Jiang F. Thermal modeling of full-size-scale cylindrical battery pack cooled by channeled liquid flow. Int J Heat Mass Transf. 2019;138:1178–87. https://doi.org/10.1016/j.ijheatmasstransfer.2019.04.137.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

HK contributed to the methodology, formal analysis, validation, writing—original draft; PA was involved in the conceptualization, methodology, writing—review and editing, supervision, validation, visualization; MA helped in the methodology, supervision, resources; EH was involved in the conceptualization, methodology, writing—review and editing, supervision, project administration, validation.

Corresponding author

Correspondence to Ehsan Houshfar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khalili, H., Ahmadi, P., Ashjaee, M. et al. Thermal analysis of a novel cycle for battery pre-warm-up and cool down for real driving cycles during different seasons. J Therm Anal Calorim 148, 8175–8193 (2023). https://doi.org/10.1007/s10973-022-11601-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-022-11601-3

Keywords

Navigation