Skip to main content
Log in

Experimental study of the effect of mechanical vibration on pool boiling heat transfer coefficient of Fe3O4/deionized water nanofluid

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In this research, the pool boiling heat transfer of the Fe3O4/deionized water nanofluid was studied experimentally under applying mechanical vibration. The results obtained from studying concentration also showed that the boiling heat transfer increases by increasing concentration at low values, while it decreases by increasing concentration at high values. Therefore, for the nanofluid, the optimum value of the boiling heat transfer coefficient was evaluated at a concentration of 0.1 vol%. Besides, the study of the effect of mechanical vibration on the boiling process showed that the mechanical vibration applied at all vibrational frequencies leads to improving the boiling heat transfer. In the current research, by applying mechanical vibration at the optimum concentration and a vibrational frequency of 33 Hz, the maximum increase in the boiling heat transfer coefficient was reported to be equal to 87.26%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

References

  1. Peng Y, et al. Analysis of the effect of roughness and concentration of Fe3O4/water nanofluid on the boiling heat transfer using the artificial neural network: an experimental and numerical study. Int J Therm Sci. 2021;163: 106863.

    Article  CAS  Google Scholar 

  2. Tian Z, et al. Experimental study of the effect of various surfactants on surface sediment and pool boiling heat transfer coefficient of silica/DI water nano-fluid. Powder Technol. 2019;356:391–402.

    Article  CAS  Google Scholar 

  3. Salimpour MR, et al. Providing a model for Csf according to pool boiling convection heat transfer of water/ferrous oxide nanofluid using sensitivity analysis. Int J Numer Methods Heat Fluid Flow. 2019;30(6):2867–81.

    Article  Google Scholar 

  4. Bergles AE. Enhancement of pool boiling. Int J Refrig. 1997;20(8):545–51.

    Article  CAS  Google Scholar 

  5. Sathyabhama A, Dinesh A. Augmentation of heat transfer coefficient in pool boiling using compound enhancement techniques. Appl Therm Eng. 2017;119:176–88.

    Article  Google Scholar 

  6. Abadi SNR, Ahmadpour A, Meyer J. Effects of vibration on pool boiling heat transfer from a vertically aligned array of heated tubes. Int J Multiph Flow. 2019;118:97–112.

    Article  CAS  Google Scholar 

  7. Chang T-B, Wang Z-L. Experimental investigation into effects of ultrasonic vibration on pool boiling heat transfer performance of horizontal low-finned U-tube in TiO2/R141b nanofluid. Heat Mass Transf. 2016;52(11):2381–90.

    Article  CAS  Google Scholar 

  8. You S, Simon TW, Bar-Cohen A. A technique for enhancing boiling heat transfer with application to cooling of electronic equipment. In: [1992 Proceedings] intersociety conference on thermal phenomena in electronic systems. 1992; IEEE.

  9. Alangar S. Effect of boiling surface vibration on heat transfer. Heat Mass Transf. 2017;53(1):73–9.

    Article  CAS  Google Scholar 

  10. Bakhtiari R, et al. Preparation of stable TiO2-Graphene/Water hybrid nanofluids and development of a new correlation for thermal conductivity. Powder Technol. 2021;385:466–77.

    Article  CAS  Google Scholar 

  11. Kumar N, et al. Experimental study on pool boiling and Critical Heat Flux enhancement of metal oxides based nanofluid. Int Commun Heat Mass Transf. 2018;96:37–42.

    Article  CAS  Google Scholar 

  12. Neto AR, Oliveira J, Passos J. Heat transfer coefficient and critical heat flux during nucleate pool boiling of water in the presence of nanoparticles of alumina, maghemite and CNTs. Appl Therm Eng. 2017;111:1493–506.

    Article  Google Scholar 

  13. Kwon YC, et al. Experimental study on CHF enhancement in pool boiling using ultrasonic field. J Ind Eng Chem. 2005;11(5):631–7.

    CAS  Google Scholar 

  14. Ali HM, et al. Experimental investigation of nucleate pool boiling heat transfer enhancement of TiO2-water based nanofluids. Appl Therm Eng. 2017;113:1146–51.

    Article  CAS  Google Scholar 

  15. Fang X, et al. Heat transfer and critical heat flux of nanofluid boiling: a comprehensive review. Renew Sustain Energy Rev. 2016;62:924–40.

    Article  CAS  Google Scholar 

  16. Ciloglu D, Bolukbasi A. A comprehensive review on pool boiling of nanofluids. Appl Therm Eng. 2015;84:45–63.

    Article  CAS  Google Scholar 

  17. Raveshi MR, et al. Experimental investigation of pool boiling heat transfer enhancement of alumina–water–ethylene glycol nanofluids. Exp Thermal Fluid Sci. 2013;44:805–14.

    Article  CAS  Google Scholar 

  18. Prisnyakov V, Prisnyakov K. Action of vibrations on heat and mass transfer in boiling. J Eng Phys Thermophys. 2001;74(4):1015–23.

    Article  CAS  Google Scholar 

  19. Wen D, Ding Y. Experimental investigation into the pool boiling heat transfer of aqueous based γ-alumina nanofluids. J Nanopart Res. 2005;7(2):265–74.

    Article  CAS  Google Scholar 

  20. Tu J, Dinh N, Theofanous T. An experimental study of nanofluid boiling heat transfer. In: Proceedings of 6th international symposium on heat transfer, Beijing, China; 2004.

  21. Salari E, et al. Boiling thermal performance of TiO2 aqueous nanofluids as a coolant on a disc copper block. Periodica Polytech Chem Eng. 2016;60(2):106–22.

    CAS  Google Scholar 

  22. Salari E, et al. Thermal behavior of aqueous iron oxide nano-fluid as a coolant on a flat disc heater under the pool boiling condition. Heat Mass Transf. 2017;53(1):265–75.

    Article  CAS  Google Scholar 

  23. Kathiravan R, et al. Pool boiling characteristics of multiwalled carbon nanotube (CNT) based nanofluids over a flat plate heater. Int J Heat Mass Transf. 2011;54(5–6):1289–96.

    Article  CAS  Google Scholar 

  24. Sarafraz M, Hormozi F. Nucleate pool boiling heat transfer characteristics of dilute Al2O3–ethyleneglycol nanofluids. Int Commun Heat Mass Transf. 2014;58:96–104.

    Article  CAS  Google Scholar 

  25. Shi M, et al. Study on pool boiling heat transfer of nano-particle suspensions on plate surface. J Enhanc Heat Transf. 2007;14(3):223–31.

    Article  CAS  Google Scholar 

  26. Chopkar M, et al. Pool boiling heat transfer characteristics of ZrO2–water nanofluids from a flat surface in a pool. Heat Mass Transf. 2008;44(8):999–1004.

    Article  CAS  Google Scholar 

  27. Liu Z-H, Liao L. Sorption and agglutination phenomenon of nanofluids on a plain heating surface during pool boiling. Int J Heat Mass Transf. 2008;51(9–10):2593–602.

    Article  CAS  Google Scholar 

  28. You S, Kim J, Kim K. Effect of nanoparticles on critical heat flux of water in pool boiling heat transfer. Appl Phys Lett. 2003;83(16):3374–6.

    Article  CAS  Google Scholar 

  29. Park K-A, Bergles A. Ultrasonic enhancement of saturated and subcooled pool boiling. Int J Heat Mass Transf. 1988;31(3):664–7.

    Article  CAS  Google Scholar 

  30. Iida Y, Tsutsui K. Effects of ultrasonic waves on natural convection, nucleate boiling, and film boiling heat transfer from a wire to a saturated liquid. Exp Thermal Fluid Sci. 1992;5(1):108–15.

    Article  CAS  Google Scholar 

  31. Vinko Z, Naim A. Boiling heat transfer from oscillating surface. J Enhanc Heat Transf. 1994;1(2):191–6.

    Article  Google Scholar 

  32. Prisniakov V, et al. Heat exchange of the vibrating heat source within the liquid capacity. Space Technol Sci. 1990;1:871–7.

    Google Scholar 

  33. Navruzov YV, Mamontov P, Stoychev A. Subcooled liquid pool boiling heat transfer on a vibrating heating surface. Heat Transf Res. 1992;24(6):771–6.

    Google Scholar 

  34. Markov I. The effect of vibration on the effect of long puzyreobrazuyuschee: boiling and condensation [Inter-university collection of scientific papers]. Riga: EPI; 1980. p. 33–9.

    Google Scholar 

  35. Moffat RJ. Describing the uncertainties in experimental results. Exp Thermal Fluid Sci. 1988;1(1):3–17.

    Article  Google Scholar 

  36. Abareshi M, et al. Fabrication, characterization and measurement of thermal conductivity of Fe3O4 nanofluids. J Magn Magn Mater. 2010;322(24):3895–901.

    Article  CAS  Google Scholar 

  37. Rohsenow WM. A method of correlating heat transfer data for surface boiling of liquids. Cambridge: MIT Division of Industrial Cooporation; 1951.

    Google Scholar 

  38. Shahmoradi Z, Etesami N, Esfahany MN. Pool boiling characteristics of nanofluid on flat plate based on heater surface analysis. Int Commun Heat Mass Transf. 2013;47:113–20.

    Article  CAS  Google Scholar 

  39. Soltani S, Etemad SG, Thibault J. Pool boiling heat transfer performance of Newtonian nanofluids. Heat Mass Transf. 2009;45(12):1555–60.

    Article  CAS  Google Scholar 

  40. Junhong L, et al. Experiments and mechanism analysis of pool boiling heat transfer enhancement with water-based magnetic fluid. Heat Mass Transf. 2004;41(2):170–5.

    Google Scholar 

  41. Prisnyakov V, et al. Characteristics of heat emission from a vibrating heat source in a vessel with liquid. High Temp. 1992;30(1):90–4.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Abdollahi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boroumand Ghahnaviyeh, M., Abdollahi, A. Experimental study of the effect of mechanical vibration on pool boiling heat transfer coefficient of Fe3O4/deionized water nanofluid. J Therm Anal Calorim 147, 14343–14357 (2022). https://doi.org/10.1007/s10973-022-11591-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-022-11591-2

Keywords

Navigation