Skip to main content
Log in

A review of heat source and resulting temperature distribution in arc welding

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Thermal analysis is one of the cardinal studies essential for arc welding processes. Thermal field and temperature distribution in arc welds affect the quality of welds as they govern the microstructural and thermo-mechanical properties. Therefore, thorough understanding of the thermal behaviour in arc welds is an absolute necessity. Significant efforts have been made in the past to determine the temperature field associated with arc welding. However, for accurate determination of the temperature field/distribution, it is necessary to understand the heat source which influences the temperature distribution in welds. Rosenthal reported the first concept of modelling the heat source, which was then improvised and new models have been instituted through the years. This review article summarizes a collective study made on the heat source and the resulting temperature distribution in arc welds. Numerous methods have been developed to conduct transient temperature distribution studies on arc welds. Analytical approaches with constant material properties, numerical approaches with variable material properties, infrared imaging systems, machine vision systems with soft computing, etc. have been developed to facilitate understanding of transient temperature in arc welds. We first summarize heat source studies followed by literatures on various techniques and methods devoted to transient temperature investigations. Eventually, latest methods used for thermal studies, such as image processing, machine learning and intelligent systems are summarized and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. https://www.twi-global.com/technical-knowledge/faqs/what-is-arc-welding

  2. Rosenthal, D. The theory of moving sources of heat and its application to metal treatments. ASME, 1946.

  3. Rosenthal D. Mathematical theory of heat distribution during welding and cutting. Weld J. 1947;20(5):220–34.

    Google Scholar 

  4. Rykalin RR. Calculation of heat processes in welding. Educ Lect. 2020;88:164.

    Google Scholar 

  5. Grong Ф. Metallurgical modelling of welding. 2nd ed. Institute of Materials; 1997.

    Google Scholar 

  6. Eager TW, Tsai NS. Temperature fields produced by traveling distributed heat sources. Weld J. 1983;62(12):346–55.

    Google Scholar 

  7. Pavelic V, Tanbakuchi R, Uyehara OA, Myers PS. Experimental and computed temperature histories in gas tungsten-arc welding of thin plates. Weld J. 1969;48(7):295–305.

    Google Scholar 

  8. Friedman E. Analysis of weld puddle distortion and its effect on penetration. Weld J Res Suppl. 1978;57:161–6.

    Google Scholar 

  9. Krutz GW, Segerlind LJ. Finite element analysis of welded structure. Weld J Res Suppl. 1978;57:211–6.

    Google Scholar 

  10. Andersson BAB. Thermal stresses in a submerged-arc welded joint considering phase transformations. J Eng Mater Technol Trans ASME. 1978;100:356–62.

    CAS  Google Scholar 

  11. Hibbert PD, Paley Z. Computation of temperatures in actual weld designs. Weld J Res Suppl. 1975;54:385–92.

    Google Scholar 

  12. Goldak J, Chakravarti A, Bibby M. A new finite element model for welding heat sources. Metall Trans B. 1984;15B:299–305.

    Google Scholar 

  13. Nguyen NT, Mai YW, Simpson S, Ohta A. Analytical approximate solution for double ellipsoidal heat source in finite thick plate. Welding Journal. 2004;3:82.

    Google Scholar 

  14. Wu CS, Wang HG, Zhang YM. A new heat source model for keyhole plasma arc welding in FEM analysis of the temperature profile. Weld J -New York. 2006;12:284.

    Google Scholar 

  15. Nguyen NT, Ohta A, Matsuoka K, Suzuki N, Maeda Y. Analytical solutions for transient temperature of semi-infinite body subjected to 3-D moving heat sources. Weld J-New York. 1999;78:265.

    Google Scholar 

  16. Roshyara NR, Wilhelm G, Semmler U, Meyer A. Approximate analytical solution for the temperature field in welding. Metall and Mater Trans B. 2011;42(6):1253–73.

    CAS  Google Scholar 

  17. Ghosh, A., and Chattopadhyaya, S. Prediction of transient temperature distribution, HAZ width and microstructural analysis of submerged arc-welded structural steel plates. In Defect and Diffusion Forum. Trans Tech Publications Ltd. 2011; 316:135–152.

  18. Boo KS, Cho HS. Transient temperature distribution in arc welding of finite thickness plates. Proc Inst Mech Eng. 1990;204(B3):175–83.

    Google Scholar 

  19. Jeong SK, Cho HS. An analytical solution to predict the transient temperature distribution in fillet arc welds. Weld J. 1997;25:223–32.

    Google Scholar 

  20. Jeong SK, Cho HS. An analytical solution for transient temperature distribution in fillet arc welding including the effect of molten metal. Proc Inst Mech Eng, Part B: J Eng Manuf. 1997;211(1):63–72.

    Google Scholar 

  21. Winczek J. Analytical solution to transient temperature field in a half-infinite body caused by moving volumetric heat source. Int J Heat Mass Transf. 2010;53(25–26):5774–81.

    CAS  Google Scholar 

  22. Ravi Vishnu P, Li WB, Easterling KE. Heat-flow model for pulsed welding. Mater Sci Technol. 1991;7:649–59.

    Google Scholar 

  23. Fassani RNS. Analytical modeling of multipass welding process with distributed heat source. J Brazil Soc Mech Sci Eng. 2003;25(3):302–5.

    Google Scholar 

  24. Kidawa-Kukla J. Temperature distribution in a rectangular plate heated by a moving heat source. Int J Heat Mass Transfer. 2008;51:865–72.

    CAS  Google Scholar 

  25. Radaj D. Heat effects of welding residual stress, distortion. Springer-Verlag; 1992. p. 38–9.

    Google Scholar 

  26. Easterling KE. Modelling the weld thermal cycle and transformation behaviour in the hest affected zone. In: Cerjak H, Easterling KE, editors. Mathematical modelling of weld phenomena. The Institute of Materials: London; 1993. p. 183–200.

    Google Scholar 

  27. Parkitny R, Winczek J. Analytical solution of temporary temperature field in half-infinite body caused by moving tilted volumetric heat source. Int J Heat Mass Transfer. 2013;60:469–79.

    Google Scholar 

  28. Goyal VK, Ghosh PK, Saini JS. Analytical studies on thermal behaviour and geometry of weld pool in pulsed current gas metal arc welding. J Mater Process Technol. 2009;209(3):1318–36.

    CAS  Google Scholar 

  29. Nasiri MB, Enzinger N. Powerful analytical solution to heat flow problem in welding. Int J Therm Sci. 2019;135:601–12.

    Google Scholar 

  30. Kempf V. Approximated analytical approach for temperature calculation in pulsed arc welding. Int J Interactive Des Manuf. 2019;25:1–7.

    Google Scholar 

  31. Yang M, Liu H, Qi B. The surface depression and temperatures in molten pool with pulsed arc welding. J Manuf Process. 2019;37:130–8.

    Google Scholar 

  32. Zhu XK, Chao YJ. Effects of temperature-dependent material properties on welding simulation. Comput Struct. 2002;80(11):967–6.

    Google Scholar 

  33. Negi V, Chattopadhyaya S. Critical assessment of temperature distribution in submerged arc welding process. Adv Mater Sci Eng. 2013;2013:1–9. https://doi.org/10.1155/2013/543594.

    Article  Google Scholar 

  34. Ozlati A, Movahedi M. Effect of welding heat-input on tensile strength and fracture location in upset resistance weld of martensitic stainless steel to duplex stainless steel rods. J Manuf Process. 2018;35:517–25.

    Google Scholar 

  35. Biswas P, Mandal NR. Thermomechanical finite element analysis and experimental investigation of single-pass single-sided submerged arc welding of C—Mn steel plates. Proc Inst Mech Eng, Part B: J Eng Manuf. 2010;224(4):627–39.

    Google Scholar 

  36. Ghosh A, Yadav A, Kumar A. Modelling and experimental validation of moving tilted volumetric heat source in gas metal arc welding process. J Mater Process Technol. 2017;239:52–65.

    Google Scholar 

  37. Ghosh A, Barman N, Chattopadhyay H, Bag S. Modelling of heat transfer in submerged arc welding process. Proc Inst Mech Eng, Part B: J Eng Manuf. 2013;227(10):1467–73.

    CAS  Google Scholar 

  38. Ghosh A, Chattopadhyay H. Mathematical modeling of moving heat source shape for submerged arc welding process. Int J Adv Manuf Technol. 2013;69(9–12):2691–701.

    Google Scholar 

  39. Ghosh A, Barman N, Chattopadhyay H, Hloch S. A study of thermal behaviour during submerged arc welding. Strojniški Vestnik–J Mech Eng. 2013;59(5):333–8.

    Google Scholar 

  40. Yang X, Chen H, Zhu Z, Cai C, Zhang C. Effect of shielding gas flow on welding process of laser-arc hybrid welding and MIG welding. J Manuf Process. 2019;38:530–42.

    Google Scholar 

  41. Baia P, Wanga BZ, Hua S, Maa S, Liang Y. Sensing of the weld penetration at the beginning of pulsed gas metal arc welding. J Manuf Process. 2017;28:343–50.

    Google Scholar 

  42. Chena Z, Chen J, Fenga Z. Welding penetration prediction with passive vision system. J Manuf. 2018;36:224–30.

    Google Scholar 

  43. Zhang L, Su S, Wang J, Chen SJ. Investigation of arc behaviour and metal transfer in cross arc welding. J Manuf Process. 2019;37:124–9.

    Google Scholar 

  44. Li D, Yang D, Zhang G, Chen X, Luo X. Microstructure and mechanical properties of welding metal with high Cr-Ni austenite wire through Ar-He-N2 gas metal arc welding. J Manuf Process. 2018;35:190–6.

    Google Scholar 

  45. Meng Y, Kang K, Gao M, Zeng X. Microstructures and properties of single-pass laser-arc hybrid welded stainless clad steel plate. J Manuf Process. 2018;36:293–300.

    Google Scholar 

  46. Pan Z, Feng Y, Hung TP, Jiang YC, Hsu FC, Wu LT, Lin CF, Lu YC, Liang SY. Heat affected zone in the laser-assisted milling of Inconel 718. J Manuf Process. 2017;30:141–7.

    Google Scholar 

  47. Fu G, Gu J, Lourenco MI, Duan M, Estefen SF. Parameter determination of double-ellipsoidal heat source model and its application in the multi-pass welding process. Ships Offshore Struct. 2015;10(2):204–17.

    Google Scholar 

  48. Zhang K, Guliani A, Ogrenci-Memik S, Memik G, Yoshii K, Sankaran R, Beckman P. Machine learning-based temperature prediction for runtime thermal management across system components. IEEE Trans Parallel Distrib Syst. 2018;29(2):405–19.

    Google Scholar 

  49. Fazli S, Hamid R, Mahdavinejad R. Prediction of temperature and HAZ in thermal-based processes with Gaussian heat source by a hybrid GA-ANN model. Opt Laser Technol. 2018;99:363–73.

    Google Scholar 

  50. Wang ZP, Turteltaub S, Abdalla M. Shape optimization and optimal control for transient heat conduction problems using an isogeometric approach. Comput Struct. 2017;185:59–74.

    Google Scholar 

  51. Paley Z, Hibbert PD. Computation of temperatures in actual weld designs. Weld J. 1975;54(11):385–92.

    Google Scholar 

  52. Westby, O. Temperature distribution in the work-piece by welding. Technical University of Norway, 1968.

  53. Yadaiah N, Bag S. Development of egg-configuration heat source model in numerical simulation of autogenous fusion welding process. Int J Therm Sci. 2014;86:125–38.

    CAS  Google Scholar 

  54. http://www16.ocn.ne.jp/~akiko-y/Egg/index_egg_E.html.

  55. http://www.mathematische-basteleien.de/eggcurves.htm.

  56. Lindgren LE. Computational welding mechanics: thermo-mechanical and microstructural simulations. Woodhead Publishing,; 2007.

    Google Scholar 

  57. Bag S, De A. Development of a three-dimensional heat-transfer model for the gas tungsten arc welding process using the finite element method coupled with a genetic algorithm-based identification of uncertain input parameters. Metall Mater Trans A. 2008;39:2698–710.

    Google Scholar 

  58. Dhinakaran V, Varsha Shree M, Jagadeesha T, Bupathi Ram PM, Sathish T, Stalin B. A review on the recent developments in modeling heat and material transfer characteristics during welding. Mater Today: Proc. 2020;21:908–11.

    Google Scholar 

  59. Quigley MBC, Richards PH, Swift-Hook DT, Gick AEF. Heat flow to the workpiece from a TIG welding arc. J Phys D Appl Phys. 1973;6(18):2250.

    CAS  Google Scholar 

  60. Christensen N. Distribution of temperatures in arc welding. Brit Weld J. 1965;12(2):5623.

    Google Scholar 

  61. Nuaes AC Jr. An extended Rosenthal weld model. Weld J, Res Suppl. 1983;56:165–70.

    Google Scholar 

  62. Myers PS, Uyehara OA, Borman GL. Fundamentals of heat flow in welding. Weld Res Council Bull. 1967;123:1.

    Google Scholar 

  63. Kang SH, Cho HS. Analytical solution for transient temperature distribution in gas tungsten arc welding with consideration of filler wire. Proc Inst Mech Eng, Part B: J Eng Manuf. 1999;213(8):799–811.

    Google Scholar 

  64. Saraev YN, Krektuleva RA, Kosyakov VA. Mathematical modelling technological processes of pulsed argon TIG welding. Weld Int. 1997;11(10):807.

    Google Scholar 

  65. Tsao KC, Wu CS. Fluid flow and heat transfer in GMA weld pools. Weld J. 1988;67(3):70–5.

    Google Scholar 

  66. Metcalfe JC, Quigley MBC. Heat transfer in plasma-arc welding. Weld J. 1975;54(3):99–103.

    Google Scholar 

  67. Keanini RG, Rubinsky B. Three-dimensional simulation of the plasma arc welding process. Int J Heat Mass Transfer. 1993;36(13):3283–98.

    CAS  Google Scholar 

  68. Goldak, J., McDill, M., Oddy, A., House, R., Chi, X., and Bibby, M. Advances in Welding Science and Technology, TWR '86, Proc. Int. Conf. on Trends in Welding Research, Gatlinburg, TN, ASM International, Metals Park, OH. 1986; 1046: 15–20.

  69. Mahin, K. W., Shapiro, A. B., and Hallquist, J. Advances in Welding Science and Technology, TWR '86, Proc. Int. Conf. on Trends in Welding Research, Gatlinburg, TN, ASM INTERNATIONAL, Metals Park, OH. 1986; 215–23.

  70. Goldak, J. Proc. Int. Conf. on Trends in Welding Technology, Gatlinburg, TN, S.A. David, ed. 1989.

  71. Goldak, J., and Bibby, M. Proc. Modeling of Casting and Welding Processes IV, A.F. Giamei and G.J. Abbaschian, eds. 1988; 153–66.

  72. Mangonon, P. L., and Mahimkar, M. A. Advances in Welding Science and Technology, TWR '86, Proc. Int. Conf. on Trends in Welding Research, Gatlinburg, TN, ASM INTERNATIONAL, Metals Park, OH. 1986; 33–45.

  73. Ramanan N, Korpela SA. Fluid dynamics of a stationary weld pool. Metall Trans A. 1990;21(1):45–57.

    Google Scholar 

  74. Ule RL, Joshi Y, Sedy EB. A new technique for three-dimensional transient heat transfer computations of autogenous arc welding. Metall Trans B. 1990;21(6):1033–47.

    Google Scholar 

  75. Patankar SV. Numerical heat transfer and fluid flow. Hemisphere Publishing Corp; 1980.

    Google Scholar 

  76. Crank J. Free and moving boundary problems. Clarendon Press; 1987.

    Google Scholar 

  77. Yeh RH, Liaw SP, Tu YP. Transient three-dimensional analysis of gas tungsten arc welding plates. Numer Heat Transfer, Part A: Appl. 2007;51(6):573–92.

    Google Scholar 

  78. Smith GD. Numerical solution of partial differential equations. Clarendon Press; 1978.

    Google Scholar 

  79. Kou S, Le Y. Heat flow during the Autogenous GTA welding of pipes. Metall Trans A. 1984;15:1165–71.

    Google Scholar 

  80. Kou S. Simulation of heat flow during the welding of thin plates. Metall Trans A. 1981;12:2025–30.

    Google Scholar 

  81. Yeh RH, Liaw SP, Yu HB. Thermal analysis of welding on aluminum plates. J Marine Sci Technol. 2003;11:213–20.

    Google Scholar 

  82. Na SJ, Lee SY. A study on the three-dimensional analysis of the transient temperature distribution in gas tungsten arc welding. Proc Inst Mech Eng, Part B: Manage Eng Manuf. 1987;201(3):149–56.

    Google Scholar 

  83. Little GH, Kamtekar AG. The effect of thermal properties and weld efficiency on transient temperatures during welding. Comput Struct. 1998;68(1–3):157–65.

    Google Scholar 

  84. Kamtekar AG, Little GH, Ji T. An efficient finite element model for calculating transient temperatures during welding: I. Proc, Computer Model Simul Eng. 1998;25:522.

    Google Scholar 

  85. Tekriwal P, Mazumder J. Finite element analysis of three-dimensional transient heat transfer in GMA welding. Weld J. 1988;67(7):150–6.

    Google Scholar 

  86. Steen, W. M. 1976. Ph.D. Thesis, Imperial College, London, England.

  87. Pammer Z. A mesh refinement method for transient heat conduction problems solved by finite elements. Int J Numer Methods Eng. 1980;15(4):495–505.

    Google Scholar 

  88. Sun JH, Wu CS, Feng YH. Modeling the transient heat transfer for the controlled pulse key-holing process in plasma arc welding. Int J Thermal Sci. 2011;50:1664–71.

    CAS  Google Scholar 

  89. Wu CS. Welding thermal processes and weld pool behaviors. CRC Press/Taylor and Francis Group; 2010.

    Google Scholar 

  90. Wu CS, Chen J, Zhang YM. Numerical analysis of both front- and back-side deformation of fully-penetrated GTAW weld pool surfaces. Comput Mater Sci. 2007;39:635–42.

    Google Scholar 

  91. Sun JH, Wu CS, Chen MA. Numerical analysis of transient temperature field and keyhole geometry in controlled pulse key-holing plasma arc welding. Numer Heat Transf, Part A: Appl. 2013;64(5):416–34.

    Google Scholar 

  92. Hu QX, Wu CS, Zhang YM. Finite element analysis of keyhole plasma arc welding based on an adaptive heat source mode. China Weld. 2007;16(2):55–8.

    Google Scholar 

  93. Zhang T, Wu CS. Analysis of the 3-D fluid velocity and temperature profile in keyhole plasma arc welding. China Weld. 2011;20(3):12–7.

    CAS  Google Scholar 

  94. Fan HG, Kovacevic R. Keyhole formation and collapse in plasma arc welding. J Phys D: Appl Phys. 1999;32:2902–9.

    CAS  Google Scholar 

  95. Hsu YF, Rubinsky B. Two-dimensional heat transfer study on the keyhole plasma arc welding process. Int J Heat Mass Transfer. 1988;31(7):1409–21.

    Google Scholar 

  96. Keanini RG. An implicit method for reconstructing dynamic three-dimensional phase boundaries under low peclet number condition. Int J Heat Mass Transfer. 1999;42:1863–84.

    Google Scholar 

  97. Nehad AK. Enthalpy technique for solution of stefan problems: application to the keyhole plasma arc welding process involving moving heat source. Int Comm Heat Mass Transfer. 1995;22(6):779–90.

    CAS  Google Scholar 

  98. Wu CS, Hu QX, Gao JQ. An adaptive heat source model for finite-element analysis of keyhole plasma arc welding. Comput Mater Sci. 2009;46:167–72.

    CAS  Google Scholar 

  99. Zhang T, Wu CS, Feng YH. Numerical analysis of heat transfer and fluid flow in keyhole plasma arc welding. Numer Heat Transfer A. 2011;60(8):1–14.

    CAS  Google Scholar 

  100. Nagarajan S, Chen WH, Chin BA. Infrared sensing for adaptive arc welding. Weld J. 1989;68(11):462–6.

    Google Scholar 

  101. Li Y, Middle JE. Machine vision analysis of welding region and its application to seam tracking in arc welding. Proc Instit Mech Eng , Part B: J Eng Manuf. 1993;207(4):275–83.

    Google Scholar 

  102. Jia Z, Wang B, Liu W, Sun Y. An improved image acquiring method for machine vision measurement of hot formed parts. J Mater Process Technol. 2010;210:267–71.

    Google Scholar 

  103. Montague RJ, Watton J, Brown KJ. A machine vision measurement of slab camber in hot strip rolling. J Mater Process Technol. 2005;168:172–80.

    Google Scholar 

  104. Fidali M, Jamrozik W. Diagnostic method of welding process based on fused infrared and vision images. Infrared Phys Technol. 2013;61:241–53.

    Google Scholar 

  105. Sarkar SS, Das A, Paul S, Ghosh A, Sarkar R, Mali K, Kumar A. Infrared imaging based machine vision system to determine transient shape of isotherms in submerged arc welding. Infrared Phys Technol. 2020;109: 103410.

    CAS  Google Scholar 

  106. Kovacevic R, Zhang YM. Machine vision recognition of weld pool in gas tungsten arc welding. Proc Inst Mech Eng, Part B: J Eng Manuf. 1995;209(2):141–52.

    Google Scholar 

  107. Zondi MC, Tekane Y, Magidimisha E, Wium E, Gopal A, Bemont C. Characterisation of submerged arc welding process using infrared imaging technique. R&D J. 2017;33:66–74.

    Google Scholar 

  108. Reisgen U, Purrio M, Buchholz G, Willms K. Machine vision system for online weld pool observation of gas metal arc welding processes. Weld World. 2007;58:707–11.

    Google Scholar 

  109. Vedrtnam A, Singh G, Kumar A. Optimizing submerged arc welding using response surface methodology, regression analysis, and genetic algorithm. Defence Technol. 2018;14:204–12.

    Google Scholar 

  110. Sailender M, Suresh R, Reddy GC, Venkatesh S. Prediction and comparison of the dilution and heat affected zone in submerged arc welding (SAW) of low carbon alloy steel joints. Measurement. 2020;150: 107084.

    Google Scholar 

  111. Pal K, Pal SK. Soft computing methods used for the modelling and optimisation of Gas Metal Arc Welding: a review. Int J Manuf Res. 2011;6(1):15–29.

    Google Scholar 

  112. Segerlind LJ. Applied finite element analysis. Wiley; 1976.

    Google Scholar 

  113. Zienkiewicz OC, Parekh CJ. Transient field problems: two-dimensional and three-dimensional analysis by isoparametric finite elements. Int J Numer Meth Eng. 1970;2(1):61–71.

    Google Scholar 

  114. Wilson EL, Nickel RE. Application of the finite element method to heat conduction analysis. Nucl Eng Des. 1966;4:276–86.

    Google Scholar 

  115. Flint TF, Francis JA, Smith MC, Balakrishnan J. Extension of the double-ellipsoidal heat source model to narrow-groove and keyhole weld configurations. J Mater Process Technol. 2017;246:123–35.

    Google Scholar 

  116. Komanduri R, Hou ZB. Thermal analysis of the arc welding process: Part I General solutions. Metall Mater Trans B. 2000;31(6):1353–70.

    Google Scholar 

  117. Gery D, Long H, Maropoulos P. Effects of welding speed, energy input and heat source distribution on temperature variations in butt joint welding. J Mater Process Technol. 2005;167(2–3):393–401.

    CAS  Google Scholar 

  118. Perić M, Nižetić S, Garašić I, Gubeljak N, Vuherer T, Tonković Z. Numerical calculation and experimental measurement of temperatures and welding residual stresses in a thick-walled T-joint structure. J Therm Anal Calorim. 2020;141:1–10.

    Google Scholar 

  119. Zuo S, Wang Z, Wang D, Du B, Cheng P, Yang Y, Zhang P, Lang N. Numerical simulation and experimental research on temperature distribution of fillet welds. Materials. 2020;13(5):1222.

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Marques ESV, Silva FJG, Pereira AB. Comparison of finite element methods in fusion welding processes—a review. Metals. 2020;10(1):75.

    CAS  Google Scholar 

  121. Massaro, A., Panarese, A., Dipierro, G., Cannella, E., and Galiano, A. Infrared Thermography and Image Processing applied on Weldings Quality Monitoring. In 2020 IEEE International Workshop on Metrology for Industry 4.0 & IoT. 2020; 559–564.

  122. Massaro A, Galiano A. Re-engineering process in a food factory: an overview of technologies and approaches for the design of pasta production processes. Prod Manuf Res. 2020;8(1):80–100.

    Google Scholar 

  123. Lay-Ekuakille A, Spano F, Kapita Mvemba P, Massaro A, Galiano A, Casciaro S, Conversano F. Nanotechnology for Instrumentation and Measurement (NANOfIM). IEEE. 2018;2018:1–6.

    Google Scholar 

  124. Massaro A, Lisco P, Lombardi A, Galiano A, Savino N. A case study of research improvements in a service industry upgrading the knowledge base of the information system and the process management: data flow automation, association rules and data mining. International Journal of Artificial Intelligence and Applications (IJAIA). 2019;10(1):25–46.

    Google Scholar 

  125. Massaro A, Vitti V, Galiano A, Morelli A. Business intelligence improved by data mining algorithms and big data systems: an overview of different tools applied in industrial research. Computer Sci Inf Technol. 2019;7(1):1–21.

    Google Scholar 

  126. Massaro A, Vitti V, Lisco P, Galiano A, Savino N. A business intelligence platform Implemented in a big data system embedding data mining: a case of study. Int J Data Min Knowl Manage Process (IJDKP). 2019;9(1):1–20.

    CAS  Google Scholar 

  127. Massaro A, Leogrande A, Lisco P, Galiano A. and Nicola. Innovative bi approaches and methodologies implementing a multilevel analytics platform based on data mining and analytical models: a case of study in roadside assistance services. Int J Soft Comput, Artif Intell Appl. 2019;54:17–36.

    Google Scholar 

  128. Lay-Ekuakille A, Durickovic I, Lanzolla A, Morello R, Capua CD, Girão PS, Postolache O, Massaro A, Biesen LV. Effluents, surface and subterranean waters monitoring: review and advances. Measurement. 2019;137:566–79.

    Google Scholar 

  129. Wang B, Hu SJ, Sun L, Freiheit T. Intelligent welding system technologies: State-of-the-art review and perspectives. J Manuf Syst. 2020;56:373–91.

    CAS  Google Scholar 

  130. Reisgen U, Mann S, Middeldorf K, Sharma R, Buchholz G, Willms K. Connected, digitalized welding production—Industrie 4.0 in gas metal arc welding. Weld World. 2019;63(4):1121–31.

    Google Scholar 

  131. Cheng Y, Wang Q, Jiao W, Yu R, Chen S, Zhang YM, Xiao J. Detecting dynamic development of weld pool using machine learning from innovative composite images for adaptive welding. J Manuf Process. 2020;56:908–15.

    Google Scholar 

  132. Lu J, Zhao Z, Han J, Bai L. Hump weld bead monitoring based on transient temperature field of molten pool. Optik. 2020;208: 164031.

    CAS  Google Scholar 

  133. Hu, S. J., Chu, Y., Hou, W., Marin, S. P., and Wang, P. C. Online monitoring system and method for a short-circuiting gas metal arc welding process. U.S. Patent 6,744,011, issued June 1, 2004.

  134. Huang Y, Yuan Y, Yang L, Wu D, Chen S. Real-time monitoring and control of porosity defects during arc welding of aluminum alloys. J Mater Process Technol. 2020;286: 116832.

    CAS  Google Scholar 

  135. Fernández, A., Souto, A., González, C., and Méndez-Rial, R. Embedded vision system for monitoring arc welding with thermal imaging and deep learning. In 2020 International Conference on Omni-layer Intelligent Systems (COINS), IEEE. 2020; 1–6.

  136. Di, L., Yonglun, S., and Feng, Y. Online monitoring of weld defects for short-circuit gas metal arc welding based on the self-organizing feature map neural networks. In Proceedings of the IEEE-INNS-ENNS International Joint Conference on Neural Networks. IJCNN 2000. Neural Computing: New Challenges and Perspectives for the New Millennium, IEEE. 2000; 5: 239–244.

  137. Eckelt B, Meyendorf N, Morgner W, Richter U. Use of automatic image processing for monitoring of welding processes and weld inspection. Elsevier; 1989. p. 37–41.

    Google Scholar 

  138. Giridharan PK, Murugan N. Optimization of pulsed GTA welding process parameters for the welding of AISI 304L stainless steel sheets. Int J Adv Manuf Technol. 2009;40(5–6):478–89.

    Google Scholar 

  139. Tarng YS, Tsai HL, Yeh SS. Modeling, optimization and classification of weld quality in tungsten inert gas welding. Int J Mach Tools Manuf. 1999;39(9):1427–38.

    Google Scholar 

  140. Benyounis KY, Olabi AG. Optimization of different welding processes using statistical and numerical approaches–A reference guide. Adv Eng Softw. 2008;39(6):483–96.

    Google Scholar 

  141. Correia DS, Gonçalves CV, Junior S, Ferraresi VA. GMAW welding optimization using genetic algorithms. J Brazilian Soc Mech Sci Eng. 2004;26(1):28–32.

    Google Scholar 

  142. Correia DS, Gonçalves CV, Simões CS, Ferraresi VA. Comparison between genetic algorithms and response surface methodology in GMAW welding optimization. J Mater Process Technol. 2005;160(1):70–6.

    Google Scholar 

  143. Odinikuku WE, Atadious D, Onwuamaeze IP. Optimization of mild steel welding process parameters using multivariate linear regression. J Eng Res Rep. 2020;25:43–50.

    Google Scholar 

  144. Lee J, Um K. A comparison in a back-bead prediction of gas metal arc welding using multiple regression analysis and artificial neural network. Opt Lasers Eng. 2000;34(3):149–58.

    Google Scholar 

  145. Yang LJ, Chandel RS, Bibby MJ. An analysis of curvilinear regression equations for modeling the submerged-arc welding process. J Mater Process Technol. 1993;37(1–4):601–11.

    Google Scholar 

  146. Lee JI, Rhee S. Prediction of process parameters for gas metal arc welding by multiple regression analysis. Proc Inst Mech Eng, Part B: J Eng Manuf. 2000;214(6):443–9.

    Google Scholar 

  147. Kumanan, S., Dhas, J., and Gowthaman, K. Determination of submerged arc welding process parameters using Taguchi method and regression analysis. 2007.

  148. Dutta P, Pratihar DK. Modeling of TIG welding process using conventional regression analysis and neural network-based approaches. J Mater Process Technol. 2007;184(1–3):56–68.

    CAS  Google Scholar 

  149. Yang LJ, Bibby MJ, Chandel RS. Linear regression equations for modeling the submerged-arc welding process. J Mater Process Technol. 1993;39(1–2):33–42.

    Google Scholar 

  150. Barsoum Z, Barsoum I. Residual stress effects on fatigue life of welded structures using LEFM. Eng Fail Anal. 2009;16:449–67.

    Google Scholar 

  151. Ghosh A, Chattopadhyaya S. Prediction of transient temperature distribution, HAZ width and microstructural analysis of submerged arc-welded structural steel plates. Defect Diff Forum. 2011;316:135–52.

    Google Scholar 

  152. Dupont JN, Marder AR. Thermal efficiency of arc welding processes. Weld J. 1995;25:406–16.

    Google Scholar 

  153. Fuerschbach PW, Knorovsky GA. A study of melting efficiency in plasma arc and gas tungsten arc welding. Weld J. 1991;70:287–97.

    Google Scholar 

  154. Sarkar SS, Das A, Paul S, Mali K, Ghosh A, Sarkar R, Kumar A. Machine learning method to predict and analyse transient temperature in submerged arc welding. Measurement. 2021;170: 108713.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

AD: Conceptualization, Literature search, Formal analysis, Data Analysis, Writing – Original draft, Writing—Review & Editing. AK: Conceptualization, Data Analysis, Writing—Review & Editing, Supervision, Funding. KS: Writing—Review & Editing. NG: Supervision, Writing—Review & Editing.

Corresponding author

Correspondence to Arvind Kumar.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Das, A., Kumar, A., Shankhwar, K. et al. A review of heat source and resulting temperature distribution in arc welding. J Therm Anal Calorim 147, 12975–13010 (2022). https://doi.org/10.1007/s10973-022-11589-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-022-11589-w

Keywords

Navigation