Skip to main content
Log in

Study of the thermal decomposition of mixtures sugarcane bagasse/titanium dioxide

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

This study addresses the formulation of composites based on carbonaceous materials derived from biomass and metallic oxides, with the aim of obtaining solids with properties suitable for applications in different sectors, such as heterogeneous photocatalysis. In this context, the thermal decomposition study of titanium dioxide/sugarcane bagasse mixtures in the proportions 1:1 and 1:2 (TiSC 1:1 and TiSC 1:2) was carried out at three different temperatures: 473, 623, and 723 K, with a heating ramp of 10 K min−1 under nitrogen flow of 80 mL min−1 for 2 h to obtain composites TiSC1:1 473, TiSC1:1 623, TiSC1:1 723, TiSC1:2 473, TiSC1:2 623, and TiSC1:2 723. The obtained solids were characterized by thermal analysis (TG/DTG and DTA), infrared spectroscopy with Fourier transform, X-ray diffraction, and specific surface area measurements. The kinetics of the decomposition of the solids at heating rates of 5, 10, 15, and 20 K min−1 were carried out using the models of Ozawa and Kissinger. The activation energy values of the precursor mixtures decreased with an increase in the proportion of titanium dioxide in the mixture. The characterization of the composites showed that the variation in the proportion of the precursors did not alter the phases of titanium dioxide that remained as anatase and rutile. In contrast, the combination of a higher heat treatment temperature and a higher proportion of biomass leads to an increase in the specific surface area.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Jawaid M, Paridah MT, Saba N. Introduction to biomass and its composites lignocellulosic. Fibre and biomass-based composite Materials: processing, properties and applications. 1st ed. Malaysia: Elsevier; 2017. p. 1–11.

    Book  Google Scholar 

  2. Anastopoulos I, Bhatnagar A, Hameed BH, Ok YS, Omirou M. A review on waste-derived adsorbents from sugar industry for pollutant removal in water and wastewater. J Mol Liq. 2017;240:179–88. https://doi.org/10.1016/j.molliq.2017.05.063.

    Article  CAS  Google Scholar 

  3. Luz FS, Candido VS, Silva ACR, Monteiro SN. Thermal behavior of polyester composites reinforced with green sugarcane bagasse fiber. JOM. 2018;70:1965–71. https://doi.org/10.1007/s11837-018-3086-7.

    Article  CAS  Google Scholar 

  4. Moubarik A, Grimi N. Valorization of olive stone and sugarcane bagasse by-products as biosorbents for the removal of cadmium from aqueous solution. Food Res Int. 2015;73:169–75. https://doi.org/10.1016/j.foodres.2014.07.050.

    Article  CAS  Google Scholar 

  5. Ahmed SA, El-Roudi AM, Salem AAA. Removal of Mn(II) from ground water by solid wastes of sugar industry. J Environ Sci Technol. 2015. https://doi.org/10.3923/jest.2015.338.351.

    Article  Google Scholar 

  6. Dezhampanah H, Mousazadeh A, Mousazadeh I. Sugarcane bagasse and modified rice husk for the removal of malachite green from aqueous wastes. Eur Chem Bull. 2014;3:400–6.

    CAS  Google Scholar 

  7. da Silva CP, dos Santos AV, Oliveira AS, da Guarda Souza MO. Synthesis of composites and study of the thermal behavior of sugarcane bagasse/iron nitrate mixtures in different proportions. J Therm Anal Calorim. 2018;131:611–20. https://doi.org/10.1007/s10973-017-6260-1.

    Article  CAS  Google Scholar 

  8. El-Salamony RA, Amdeha E, Ghoneim SA, Badawy NA, Salem KM, Al-Sabagh AM. Titana modified activated carbon prepared from sugar cane bagasse: adsorption and photocatalytic degradation of methylene blue under visible light irradiation. Environ Technol. 2017;38:3122–36. https://doi.org/10.1080/21622515.2017.1290148.

    Article  CAS  Google Scholar 

  9. Pang Y, Teh WS, Lim S, Abdullah AZ, Ong HC, Wu CH. Enhancement of adsorption-photocatalysis of malachite green using oil palm biomass-derived activated carbon/ titanium dioxide composite. Curr Anal Chem. 2021;17(5):603–17. https://doi.org/10.2174/1573411016666200106105903.

    Article  CAS  Google Scholar 

  10. Kanakaraju D, Wong SP. Photocatalytic efficiency of TiO2-biomass loaded mixture for wastewater treatment. J Chem. 2018. https://doi.org/10.1155/2018/4314969.

    Article  Google Scholar 

  11. Inagaki M, Kojin F, Tryba B, Toyoda M. Carbon-coated anatase: the role of the carbon layer for photocatalytic performance. Carbon. 2005;43:1652–9. https://doi.org/10.1016/j.carbon.2005.01.043.

    Article  CAS  Google Scholar 

  12. Zhang R, Elzatahry AA, Al-Deyab SS, Zhao D. Mesoporous titania: from synthesis to application. Nano Today. 2012;7:344–66. https://doi.org/10.1016/j.nantod.2012.06.012.

    Article  CAS  Google Scholar 

  13. Etienne M, Guillemin Y, Grosso D, Walcarius A. Electrochemical approaches for the fabrication and/or characterization of pure and hybrid templated mesoporous oxide thin films: a review. Anal Bioanal Chem. 2013;405:1497–512. https://doi.org/10.1007/s00216-012-6334-7.

    Article  CAS  Google Scholar 

  14. Habibi MH, Kiani N. Preparation of single-phase α-Fe(III) oxide nanoparticles by thermal decomposition influence of the precursor on properties. J Therm Anal Calorim. 2013. https://doi.org/10.1007/s10973-012-2571-4.

    Article  Google Scholar 

  15. Roque-Diaz P, Villas L, Shemet CV, Lavrenko VA. Khristich VA 1985 Studies on thermal decomposition and combustion mechanism of bagasse under non-isothermal conditions. Thermochim Acta. 1985;93:349–52. https://doi.org/10.1016/0040-6031(85)85088-7.

    Article  CAS  Google Scholar 

  16. Garzón E, Arce C, Callejón-Ferre AJ, Pérez-Falcón JM, Sánchez-Soto PJ. Thermal behaviour of the different parts of almond shells as waste biomass. J Therm Anal Calorim. 2021. https://doi.org/10.1007/s10973-021-10940-x.

    Article  Google Scholar 

  17. Ouensanga A, Picard C. Thermal degradation of sugar cane bagasse. Thermochim Acta. 1988;125:89–97. https://doi.org/10.1016/0040-6031(88)87213-7.

    Article  CAS  Google Scholar 

  18. Zanatta ER, Reinehr TO, Awadallak JA, Kleinübing SJ, dos Santos JBO, Bariccatti RA, et al. Kinetics studies of thermal decomposition of sugarcane bagasse and cassava bagasse. J Therm Anal Calorim. 2016;125:437–45. https://doi.org/10.1007/s10973-016-5378-x.

    Article  CAS  Google Scholar 

  19. Nassar MM, Ashour EA, Wahid SS. Thermal characteristics of bagasse. J Appl Polym Sci. 1996;61:885–90. https://doi.org/10.1002/(SICI)1097-4628(19960808)61:6%3c885::AID-APP1%3e3.0.CO;2-D.

    Article  CAS  Google Scholar 

  20. Mothé CG, de Miranda IC. Study of kinetic parameters of thermal decomposition of bagasse and sugarcane straw using Friedman and Ozawa-Flynn-Wall isoconversional methods. J Therm Anal Calorim. 2013;113:497–505. https://doi.org/10.1007/s10973-013-3163-7.

    Article  CAS  Google Scholar 

  21. Rueda-Ordóñez YJ, Tannous K. Isoconversional kinetic study of the thermal decomposition of sugarcane straw for thermal conversion processes. Bioresour Technol. 2015;196:136–44. https://doi.org/10.1016/j.biortech.2015.07.062.

    Article  CAS  Google Scholar 

  22. Nsib MF, Hajji F, Mayoufi A, Moussa N, Rayes A, Houas A. In situ synthesis and characterization of TiO2/HPM cellulose hybrid material for the photocatalytic degradation of 4-NP under visible light. CR Chim. 2014;17:839–48. https://doi.org/10.1016/j.crci.2014.01.010.

    Article  CAS  Google Scholar 

  23. Martins NCT, Ângelo J, Girão AV, Trindade T, Andrade L, Mendes A. N-doped carbon quantum dots/TiO2 composite with improved photocatalytic activity. Appl Cat B. 2016;193:67–74. https://doi.org/10.1016/j.apcatb.2016.04.016.

    Article  CAS  Google Scholar 

  24. Ratajska H, Przepiera A, Wišniewski M. Thermal transformations of hydrous titanium dioxide. J Therm Anal. 1990;36:2131–4. https://doi.org/10.1007/BF01914138.

    Article  CAS  Google Scholar 

  25. Wang L, Fu X, Han Y, Chang E, Wu H, Wang H, Li K, Qi X. Preparation, characterization and photocatalytic activity of TiO2/ZnO nanocomposites. J Nanomater. 2013. https://doi.org/10.1155/2013/321459.

    Article  Google Scholar 

  26. Hameed Z, Aman Z, Naqvi SR, Tariq R, Ali I, Makki AA. Kinetic and thermodynamic analysis of sugarcane bagasse and sewage sludge co-pyrolysis process. Energy Fuels. 2018;32:9551–8. https://doi.org/10.1021/acs.energyfuels.8b01972.

    Article  CAS  Google Scholar 

  27. Asiltürk M, Şener Ş. TiO2-activated carbon photocatalysts: preparation, characterization and photocatalytic activities. Chem Eng J. 2012;180:354–63. https://doi.org/10.1016/j.cej.2011.11.045.

    Article  CAS  Google Scholar 

  28. Palkovská M, Slovák V, Šubrt J, Boháček J, Barbieriková Z, Brezová V, et al. Investigation of the thermal decomposition of a new titanium dioxide material. J Therm Anal Calorim. 2016;125:1071–8. https://doi.org/10.1007/s10973-016-5526-3.

    Article  CAS  Google Scholar 

  29. Souza MODG, Rebouças LM, Castro LMF. Characterization and thermal decomposition study of mango residue biomass (Mangifera indica L.). J Therm Anal Calorim. 2019. https://doi.org/10.1007/s10973-019-08540-x.

    Article  Google Scholar 

  30. Mothé CG, Azevedo AD. Análise térmica de materiais. Rio de Janeiro: Artliber; 2009.

    Google Scholar 

  31. dos Santos MD, da Guarda Souza MO. Thermal decomposition of precursors and iron oxide properties: influence of promoters (Mn and Cu) and preparation method. J Therm Anal Calorim. 2016;123:955–63. https://doi.org/10.1007/s10973-015-4840-5.

    Article  CAS  Google Scholar 

  32. Morais LC, Maia AAD, Guandique MEG, Rosa AH. Pyrolysis and combustion of sugarcane bagasse. J Therm Anal Calorim. 2017;129:1813–22. https://doi.org/10.1007/s10973-017-6329-x.

    Article  CAS  Google Scholar 

  33. Edreis EMA, Luo G, Yao H. Investigations of the structure and thermal kinetic analysis of sugarcane bagasse char during non-isothermal CO2 gasification. J Anal Appl Pyrol. 2014;107:107–15. https://doi.org/10.1016/j.jaap.2014.02.010.

    Article  CAS  Google Scholar 

  34. Ernesto VART, Ribeiro CA, Hojo O, Fertonani FL, Crespi MS. Thermal characterization of lignocellulosic residue from different sugarcanes. J Therm Anal Calorim. 2009;97:653–6. https://doi.org/10.1007/s10973-009-0370-3.

    Article  CAS  Google Scholar 

  35. Silva WLL, Oliveira SP. Modificação das características de adsorção do bagaço de cana para remoção do azul de metileno de soluções aquosas. Sci Plena. 2012. https://www.scientiaplena.org.br/sp/article/view/831/570.

  36. Bilba K, Ouensanga A. Fourier transform infrared spectroscopic study of thermal degradation of sugar cane bagasse. J Anal Appl Pyrol. 1996;38:61–73. https://doi.org/10.1016/S0165-2370(96)00952-7.

    Article  CAS  Google Scholar 

  37. Gao T, Fjellvåg H, Norby P. Crystal structures of titanate nanotubes: a raman scattering study. Inorg Chem. 2009;48:1423–32. https://doi.org/10.1021/ic801508k.

    Article  CAS  Google Scholar 

  38. Kunnamareddy M, Diravidamani B, Rajendran R, Singaram B, Varadharajan K. Synthesis of silver and sulphur codoped TiO2 nanoparticles for photocatalytic degradation of methylene blue. J Mater Sci Mater Electron. 2018;29:18111–9. https://doi.org/10.1007/s10854-018-9922-2.

    Article  CAS  Google Scholar 

  39. Buraso W, Lachom V, Siriya P, Laokul P. Synthesis of TiO2 nanoparticles via a simple precipitation method and photocatalytic performance. Mater Res Expr. 2018;5:1–10. https://doi.org/10.1088/2053-1591/aadbf0.

    Article  CAS  Google Scholar 

  40. Yu H, Zhao Y, Zhou C, Shang L, Peng Y, Cao Y, Wu L-Z, Thung C-H, Zhang T. Carbon quantum dots/TiO2 composites for efficient photocatalytic hydrogen evolution. J Mater Chem A. 2014;2:3259–678. https://doi.org/10.1039/c3ta14108j.

    Article  CAS  Google Scholar 

  41. Tekina D, Birhana D, Kiziltas H. Thermal, photocatalytic, and antibacterial properties of calcinated nano-TiO2/polymer composites. Mater Chem and Phys. 2020;251: 123067. https://doi.org/10.1016/j.matchemphys.2020.123067.

    Article  CAS  Google Scholar 

  42. Jasim MU, Cesano F, Chowdhury RA, Trad T, Cravanzola S, Martra G, Mino L, Zecchina A, Scarano D. Surface structure and phase composition of TiO2 P25 particles after thermal treatments and HF etching. Front Mater. 2020. https://doi.org/10.3389/fmats.2020.0019.

    Article  Google Scholar 

  43. Machado NRCF, Santana VS. Influence of thermal treatment on the structure and photocatalytic activity of TiO2 P25. Catal Today. 2005. https://doi.org/10.1016/j.cattod.2005.07.022.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marluce Oliveira da Guarda Souza.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 56 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Silva, F.S., Nascimento, S.S., dos Santos, A.V. et al. Study of the thermal decomposition of mixtures sugarcane bagasse/titanium dioxide. J Therm Anal Calorim 148, 37–47 (2023). https://doi.org/10.1007/s10973-022-11583-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-022-11583-2

Keywords

Navigation