Skip to main content
Log in

Comparative analysis of poly(ether-ether-ketone) properties aged in different conditions for application in pipelines

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

This study aimed to evaluate the aging of poly(ether-ether-ketone) (PEEK) submitted to different media: in air, in water bubbled with nitrogen, in water bubbled with air, and in water at pH 4, for 90 days at temperatures of 120, 140 and 160 °C. The physical, thermal and mechanical properties of PEEK specimens were evaluated before and after aging. The density measurements showed that the aging conditions employed did not promote water absorption or mass loss; thermogravimetric analyses (TGA) showed that all aging media exerted the same effects on the material's thermal stability, with variation in the initial thermal degradation (Tonset) below 5 °C concerning the unaged polymer. The thermal history obtained by differential scanning calorimetry (DSC) did not show significant variations in thermal transition temperatures in the first heating cycle, indicating that the aging conditions did not cause internal degradation in PEEK samples within the studied period. The degree of crystallinity calculated by X-ray diffractometry (XRD) and DSC demonstrated a slight increase over time due to thermal annealing at temperatures above the Tg of the unaged PEEK. The mechanical properties of the aged PEEK showed low variations in Young’s modulus and greater variations in the tension at rupture and elongation at rupture, being more drastic in the aqueous media saturated in air and acid solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. de Sousa JRM, Campello GC, Bueno AFB, Vardaro E, Ellwanger GB, Strohaecker TR. On the structural response of a flexible pipe with damaged tensile armor wires. vol 4 Pipeline Riser Technol. ASMEDC; 2011. 847–58.

  2. Viswanathan K, Ikhsan Taipabu M, Wu W. Novel Petit grain bitter orange waste peel oil biofuel investigation in diesel engine with modified fuel injection pressure and bowl geometry. Fuel. 2022;319: 123660.

    Article  CAS  Google Scholar 

  3. Thiyagarajan S, Sonthalia A, Edwin Geo V, Ashok B, Nanthagopal K, Karthickeyan V, et al. Effect of electromagnet-based fuel-reforming system on high-viscous and low-viscous biofuel fueled in heavy-duty CI engine. J Therm Anal Calorim. 2019;138:633–44.

    Article  CAS  Google Scholar 

  4. Madhankumar S, Stanley MJ, Thiyagarajan S, Geo VE, Karthickeyan V, Chen Z. Effect of oxygen enrichment on CI engine behavior fueled with vegetable oil: an experimental study. J Therm Anal Calorim. 2020;142:1275–86.

    Article  Google Scholar 

  5. Viswanathan K, Wu W, Taipabu MI, Chandra-Ambhorn W. Effects of antioxidant and ceramic coating on performance enhancement and emission reduction of a diesel engine fueled by Annona oil biodiesel. J Taiwan Inst Chem Eng. 2021;125:243–56.

    Article  CAS  Google Scholar 

  6. Ting KC, Chavan K, Balmford S, Sullivan D. The installation of flexible risers and flowlines systems with PLET on the subsea end. Vol 5A Pipelines, Risers, Subsea Syst. American Society of Mechanical Engineers (2017).

  7. Bai Q, Bai Y, Ruan W. Flexible pipes: advances in pipes and pipelines. New York: Wiley; 2017.

    Book  Google Scholar 

  8. Laux KA, Sue H-J, Hossain MM, Bremner T. Influence of wet contact conditions on the multidirectional fretting behavior of Polyetheretherketone and composites. Polymer. 2017;108:462–75.

    Article  CAS  Google Scholar 

  9. Mylläri V, Ruoko T-P, Vuorinen J, Lemmetyinen H. Characterization of thermally aged polyetheretherketone fibres – mechanical, thermal, rheological and chemical property changes. Polym Degrad Stab. 2015;120:419–26.

    Article  Google Scholar 

  10. Niu Y-F, Yang Y, Li T-Y, Yao J-W. Effects of UV irradiation and condensation on poly(ether-ether-ketone)/carbon fiber composites from nano- to macro-scale. High Perform Polym. 2018;30:230–8.

    Article  CAS  Google Scholar 

  11. Reyna-Valencia A, Kaliaguine S, Bousmina M. Tensile mechanical properties of sulfonated poly(ether ether ketone) (SPEEK) and BPO4/SPEEK membranes. J Appl Polym Sci. 2005;98:2380–93.

    Article  CAS  Google Scholar 

  12. Patel P, Hull TR, McCabe RW, Flath D, Grasmeder J, Percy M. Mechanism of thermal decomposition of poly(ether ether ketone) (PEEK) from a review of decomposition studies. Polym Degrad Stab. 2010;95:709–18.

    Article  CAS  Google Scholar 

  13. Yasin S, Shakeel A, Ahmad M, Ahmad A, Iqbal T. Physico-chemical analysis of semi-crystalline PEEK in aliphatic and aromatic solvents. Soft Mater. 2019;17:143–9.

    Article  CAS  Google Scholar 

  14. Liu P, Mullins M, Bremner T, Benner N, Sue H-J. Interfacial Phenomena and Mechanical Behavior of Polyetheretherketone/Polybenzimidazole Blend under Hygrothermal Environment. J Phys Chem B. 2017;121:5396–406.

    Article  CAS  Google Scholar 

  15. Kemmish DJ. Practical guide to high performance engineering plastics. Shrewsbury: Smithers Rapra; (2011).

  16. Abbasnezhad N, Khavandi A, Fitoussi J, Arabi H, Shirinbayan M, Tcharkhtchi A. Influence of loading conditions on the overall mechanical behavior of polyether-ether-ketone (PEEK). Int J Fatigue. 2018;109:83–92.

    Article  CAS  Google Scholar 

  17. Yuan B, Cheng Q, Zhao R, Zhu X, Yang X, Yang X, et al. Comparison of osteointegration property between PEKK and PEEK: Effects of surface structure and chemistry. Biomaterials. 2018;170:116–26.

    Article  CAS  Google Scholar 

  18. Wang Y, Wang Y, Lin Q, Cao W, Liu C, Shen C. Crystallization behavior of partially melted poly(ether ether ketone). J Therm Anal Calorim. 2017;129:1021–8.

    Article  CAS  Google Scholar 

  19. Díez-Pascual AM, Naffakh M, Marco C, Ellis G, Gómez-Fatou MA. High-performance nanocomposites based on polyetherketones. Prog Mater Sci. 2012;57:1106–90.

    Article  Google Scholar 

  20. Zhao F, Li D, Jin Z. Preliminary investigation of poly-ether-ether-ketone based on fused deposition modeling for medical applications. Materials. 2018;11:288.

    Article  Google Scholar 

  21. Attwood TE, Dawson PC, Freeman JL, Hoy LRJ, Rose JB, Staniland PA. Synthesis and properties of polyaryletherketones. Polymer. 1981;22:1096–103.

    Article  CAS  Google Scholar 

  22. Zalaznik M, Kalin M, Novak S. Influence of the processing temperature on the tribological and mechanical properties of poly-ether-ether-ketone (PEEK) polymer. Tribol Int. 2016;94:92–7.

    Article  CAS  Google Scholar 

  23. Leonardi A, Dantras E, Dandurand J, Lacabanne C. Dielectric relaxations in PEEK by combined dynamic dielectric spectroscopy and thermally stimulated current. J Therm Anal Calorim. 2013;111:807–14.

    Article  CAS  Google Scholar 

  24. Rinaldi M, Ghidini T, Cecchini F, Brandao A, Nanni F. Additive layer manufacturing of poly (ether ether ketone) via FDM. Compos Part B Eng. 2018;145:162–72.

    Article  CAS  Google Scholar 

  25. Kolbeck AG. Aging of piezoelectricity in poly(vinylidene fluoride). J Polym Sci Polym Phys Ed. 1982;20:1987–2001.

    Article  CAS  Google Scholar 

  26. Ries A, Porto GA, Fook MVL, Fidéles TB. Materiais com o elevado efeito eletrocalórico para aplicações em sistemas alternativas de refrigeração. Rev Eletrônica Mater e Process. 2010;5:36–42.

    Google Scholar 

  27. Yang D, Tornga S, Orler B, Welch C. Aging of poly(vinylidene fluoride) hollow fibers in light hydrocarbon environments. J Memb Sci. 2012;409–410:302–17.

    Article  Google Scholar 

  28. Pini T, Drongelen M, Remmers JJC, Geers MGD, Govaert LE. Deformation and failure kinetics of polyvinylidene fluoride: Influence of crystallinity. J Polym Sci. 2021;59:1209–20.

    Article  CAS  Google Scholar 

  29. Li Zhen LuQ, Yin Y, Yan J, Yue Q, Zhang J. Influence of thermal aging on structure and properties of polyvinylidene fluoride. Polym Mater Sci Eng. 2019;35(06):40–4.

    Google Scholar 

  30. Izdebska J. Aging and degradation of printed materials. Print Polym, 353–370. Amsterdam: Elsevier; 2016.

    Google Scholar 

  31. White JR. Polymer ageing: physics, chemistry or engineering? Time to reflect Comptes Rendus Chim. 2006;9:1396–408.

    Article  CAS  Google Scholar 

  32. de Paoli MA. Degradação e estabilização de polímeros. São Paulo: Artliber Publishing House; 2009.

    Google Scholar 

  33. Kutz M. Handbook of environmental degradation of materials. Norwich: William Andrew; 2018.

    Google Scholar 

  34. Yuan M, Galloway JA, Hoffman RJ, Bhatt S. Influence of molecular weight on rheological, thermal, and mechanical properties of PEEK. Polym Eng Sci. 2011;51:94–102.

    Article  CAS  Google Scholar 

  35. Day M, Cooney JD, Wiles DM. The thermal stability of poly(aryl-ether–ether-ketone) as assessed by thermogravimetry. J Appl Polym Sci. 1989;38:323–37.

    Article  CAS  Google Scholar 

  36. Jones DJ, Rozière J. Recent advances in the functionalisation of polybenzimidazole and polyetherketone for fuel cell applications. J Memb Sci. 2001;185:41–58.

    Article  CAS  Google Scholar 

  37. Galloway J, Hoffamn R, Bhatt S. Effect of multiple shear histories on rheological behavior and devolatilization of poly (ether ether ketone). In ANTEC Conf Proceedings, 5. Cincinnati, OH: SPE; 2007. pp. 3031–5.

  38. da Vasconcelos GC, Mazur RL, Ribeiro B, Botelho EC, Costa ML. Evaluation of decomposition kinetics of poly (ether-ether-ketone) by thermogravimetric analysis. Mater Res. 2013;17:227–35.

    Article  Google Scholar 

  39. Mohammed MH, Banks WM, Hayward D, Liggat JJ, Pethrick RA, Thomson B. Physical properties of poly(ether ether ketone) exposed to simulated severe oilfield service conditions. Polym Degrad Stab. 2013;98:1264–70.

    Article  CAS  Google Scholar 

  40. Yu K, Morozov EV, Ashraf MA, Shankar K. A review of the design and analysis of reinforced thermoplastic pipes for offshore applications. J Reinf Plast Compos. 2017;36:1514–30.

    Article  CAS  Google Scholar 

  41. Li X, Zhang S, Wang H, Zhang C, Pang J, Mu J, et al. Study of blends of linear poly(ether ether ketone) of high melt viscosity and hyperbranched poly(ether ether ketone). Polym Int. 2011;60:607–12.

    Article  CAS  Google Scholar 

  42. Monson L, Moon SI, Extrand CW. Permeation resistance of poly(ether ether ketone) to hydrogen, nitrogen, and oxygen gases. J Appl Polym Sci. 2013;127:1637–42.

    Article  CAS  Google Scholar 

  43. Baudet C, Grandidier J-C, Cangémi L. A damage model for the blistering of polyvinylidene fluoride subjected to carbon dioxide decompression. J Mech Phys Solids. 2011;59:1909–26.

    Article  CAS  Google Scholar 

  44. Viswanathan K, Abbas S, Wu W. Syngas analysis by hybrid modeling of sewage sludge gasification in downdraft reactor: Validation and optimization. Waste Manag. 2022;144:132–43.

    Article  CAS  Google Scholar 

  45. Eranna G, Joshi BC, Runthala DP, Gupta RP. Oxide materials for development of integrated gas sensors—a comprehensive review. Crit Rev Solid State Mater Sci. 2004;29:111–88.

    Article  CAS  Google Scholar 

  46. Flaconneche B, Martin J, Klopffer MH. Transport properties of gases in polymers: experimental methods. Oil Gas Sci Technol. 2001;56:245–59.

    Article  CAS  Google Scholar 

  47. ISO 527-2 - Plastics - Determination of tensile properties - Part 2: Test conditions for moulding and extrusion plastics. 2012.

  48. de Paula LGA, van Haandel AC, Silva HA, Porto GA. Estudo comparativo da determinação experimental das constantes de sedimentabilidade de lodos ativados. Rev DAE. 2018;66:51–61.

    Article  Google Scholar 

  49. ISO 1183‐1 - Plastics‐Methods for determining the density of non‐cellular plastics. Part 1: Immersion method, liquid pyknometer method and titration method. 2004.

  50. Gray DE. American institute of physics handbook. Am J Phys. 1964;32(5):389–90.

    Article  Google Scholar 

  51. ASTM D3418, 2008, Standard test method for transition temperature and enthalpies of fusion and crystallization of polymers by differential scanning calorimetry. West Conshohocken; 2008.

  52. Blundell DJ, Osborn BN. The morphology of poly(aryl-ether-ether-ketone). Polymer. 1983;24:953–8.

    Article  CAS  Google Scholar 

  53. Zhansitov AA, Slonov AL, Baikaziev AE, Murzakanova MM, Khashirova SY. Investigation of the crystallization of polyetherketones by the differential scanning calorimetry method. Mater Sci Forum. 2018;935:36–9.

    Article  Google Scholar 

  54. Wojdyr M. Fityk : a general-purpose peak fitting program. J Appl Crystallogr. 2010;43:1126–8.

    Article  CAS  Google Scholar 

  55. ASTM International. ASTM D638-14, Standard Test Method for Tensile Properties of Plastics. ASTM Int. 2015

  56. Madhankumar S, Viswanathan K, Wu W. Energy, exergy and environmental impact analysis on the novel indirect solar dryer with fins inserted phase change material. Renew Energy. 2021;176:280–94.

    Article  CAS  Google Scholar 

  57. Capodanno V, Petrillo E, Romano G, Russo R, Vittoria V. Effect of physical aging on the properties of films of amorphous poly(ether ether ketone) (PEEK). J Appl Polym Sci. 1997;65:2635–41.

    Article  CAS  Google Scholar 

  58. Mancipe JMA, Nista SVG, Caballero GER, Mei LHI. Thermochromic and/or photochromic properties of electrospun cellulose acetate microfibers for application as sensors in smart packing. J Appl Polym Sci. 2021;138:50039.

    Article  CAS  Google Scholar 

  59. Yang L, Ohki Y, Hirai N, Hanada S. Aging of poly(ether ether ketone) by heat and gamma rays—its degradation mechanism and effects on mechanical, dielectric and thermal properties. Polym Degrad Stab. 2017;142:117–28.

    Article  CAS  Google Scholar 

  60. Liu H, Wang J, Jiang P, Yan F. Accelerated degradation of polyetheretherketone and its composites in the deep sea. R Soc Open Sci. 2018;5: 171775.

    Article  Google Scholar 

  61. Buggy M, Carew A. The effect of thermal ageing on carbon fibre-reinforced polyetheretherketone (PEEK). J Mater Sci. 1994;29:2255–9.

    Article  CAS  Google Scholar 

  62. Je MARK. Physical properties of polymers handbook. New York: Springer; 2007.

    Google Scholar 

  63. Yang C, Tian X, Li D, Cao Y, Zhao F, Shi C. Influence of thermal processing conditions in 3D printing on the crystallinity and mechanical properties of PEEK material. J Mater Process Technol. 2017;248:1–7.

    Article  Google Scholar 

  64. Ganesan N, Viswanathan K, Karthic SV, Ekambaram P, Wu W, Vo D-VN. Split injection strategies based RCCI combustion analysis with waste cooking oil biofuel and methanol in an open ECU assisted CRDI engine. Fuel. 2022;319:123710.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the financial support of CAPES and CNPQ.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria de Fátima Vieira Marques.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Porto, G.A., de Paula, L.G.A., Arias, J.J.R. et al. Comparative analysis of poly(ether-ether-ketone) properties aged in different conditions for application in pipelines. J Therm Anal Calorim 148, 79–95 (2023). https://doi.org/10.1007/s10973-022-11582-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-022-11582-3

Keyword

Navigation