Skip to main content
Log in

Effect of chain transfer agent on microstructure and thermal properties of cyclic olefin copolymer with low comonomer content

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Ethylene–norbornene copolymers were synthesized in a low-content norbornene window with rac-ethylene-bis(indenyl)zirconiumdichloride (EBI) catalyst to deeply investigate the microstructure of ethylene norbornene and thermal properties of copolymers with the addition of chain shuttling agent (CSA). Copolymers with norbornene content from 3 to 16% were obtained by changing the feed ratio in copolymerization. The melting temperatures (Tm) of the obtained copolymers were between 126.5 and 131 °C depending copolymer content. However, the copolymer with the highest norbornene in feed did not show any melting point and it was shown the glass-transition temperature (Tg) at 63.2 °C. The viscosity average molecular mass (Mv) of the produced copolymers without CSA was between 25,500 and 55,000 g mol−1; however, in the presence of CSA the Mv contents decreased between 6600 and 20,000 g mol−1 depending on CSA contents. The addition of CSA increased the catalyst activity in copolymerization, especially diethylzinc (DEZ) compared to tri isobutyl aluminum (TIBA). 13CNMR exhibited the presence of triads with a norbornene unit isolated between ethylene units or alternated meso-sequences of comonomer s. There were not detected any significant amount of two norbornene (NN) sequences. It was observed that with increasing chain shuttling agent in spite of decreasing norbornene content the heterogeneity of microstructure was increased. The results of thermal separation indicate more dispersion and heterogeneity in the presence of chain transfer agents (CTA). Dynamic mechanical thermal analysis (DMTA) results also indicate that the copolymerization with diethyl zinc, despite reducing the amount of norbornene, has led to the production of heterogeneous blocks in the polyethylene microstructure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Hutley TJ, Ouederni M. Polyolefin compound and materials, Chapter 2: Polyolefins-the history and economic impact. Switzerland: Springer; 2016. p. 13–50.

    Book  Google Scholar 

  2. Manteghi A, Arabi H, Jahani Y. Synthesis, characterization, rheological and thermal behavior of metallocene ethylene− norbornene copolymers with low norbornene content using pentafluorophenol modified methylaluminoxane. Polym Inter. 2015;64:900–6.

    Article  CAS  Google Scholar 

  3. Blochowiak M, Pakula T, Butt HJ, Bruch M, Floudas G. Thermodynamics and rheology of cycloolefin copolymers. J Chem Phys. 2006;124:134903.

    Article  CAS  PubMed  Google Scholar 

  4. Pereira L, Marques M. Influence of diethyl zinc on ethylene-norbornene copolymerization. Polyolefins J. 2018;5(1):71–84.

    CAS  Google Scholar 

  5. Jacobs A, Fink G, Ruchatz D. Method for producing a cycloolefin copolymer in US Patent. 2002; US6365686B1.

  6. Shin JY, Park JY, Liu C, He J, Kim SC. Chemcial structure and physical properties of cyclic olefin copolymers. Pure Appl Chem. 2005;77(5):801–14.

    Article  CAS  Google Scholar 

  7. Tritto I, Marestin C, Boggioni L, Zetta L, Provasoli A, Ferro DR. Ethylene-norbornene copolymer microstructure. assessment and advances based on assignments of 13CNMR spectra. Macromolecules. 2000;33:8931–44.

    Article  CAS  Google Scholar 

  8. Nomura KJ, Liu S, Padmanabhan S, Kitiyanan B. Nonbridged half-metallocenes containing anionic ancillary donor ligands: new promising candidates as catalysts for precise olefin polymerization. J Mol Cat A Chem. 2007;267:1–29.

    Article  CAS  Google Scholar 

  9. Farquhar AH, Brookhart M, Miller AJM. Oligomerization and polymerization of 5-ethylidene-2-norbornene by cationic palladium and nickel catalysts. Polym Chem. 2020;11:2576–84.

    Article  CAS  Google Scholar 

  10. Huo P, Liu W, He X, Mei G. Vinylic copolymerization of norbornene and higher 1-alkene with three-dimensional geometry binickel catalyst. J Polym Res. 2015;22(10):1–7.

    Article  CAS  Google Scholar 

  11. Bykov VI, Butenko TA. Composition and microstructure of norbornene-ethylene copolymers. Polym Sci series B. 2018;60:754–9.

    Article  CAS  Google Scholar 

  12. Hong M, Cui L, Liu S, Li Y. Synthesis of novel cyclic olefin copolymer (COC) with high performance via effective copolymerization of ethylene with bulky cyclic olefin. Macromolecules. 2012;45:5397–402.

    Article  CAS  Google Scholar 

  13. Karpov GO, Il Borisov, Volkov AV, Finkelshtein ES, Bermeshev MV. Synthesis and gas transport properties of addition polynorbornene with perfluorophenyl side groups. Polymers. 2020;12(6):1282.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Bermeshev MV, Chapala PP. Addition polymerization of functionalized norbornenes as powerful tool for assembling molecular moieties of new polymers with versatile properties. Prog Polym Sci. 2018;84:1–46.

    Article  CAS  Google Scholar 

  15. Valente A, Mortreux A, Visseaux M, Zinck P. Coordinative chain transfer polymerization. Chem Rev. 2013;113(5):3836–57.

    Article  CAS  PubMed  Google Scholar 

  16. Liu P, Liu W, Wang WJ, Li BG, Zhu S. A Comprehensive review on controlled synthesis of long-chain branched polyolefins: Part 1. Single Catal Syst Macromol React Eng. 2016;10:156–79.

    Article  CAS  Google Scholar 

  17. Briquel R, Mazzolini J, Le Bris T, Boyron O, Boisson F, Delolme F, D’Agosto F, Boisson C, Spitz R. Polyethylene building blocks by catalyzed chain growth and efficient end functionalization strategies, including click chemistry. Angew Chem Int Ed. 2008;47(48):9311–3.

    Article  CAS  Google Scholar 

  18. Arriola DJ, Carnahan EM, Hustad PD, Kuhlman RL, Wenzel TT. Catalytic production of olefin blocks copolymers via chain shuttling polymerization. Science. 2006;12(5774):714–9.

    Article  Google Scholar 

  19. Hustad PD, Kuhlman RL, Carnahan EM, Wenzel TT, Arriola DJ. An exploration of the effects of reversibility in chain transfer to metal in olefin polymerization. Macromolecules. 2008;41(12):4081–9.

    Article  CAS  Google Scholar 

  20. Boggioni L, Sidari D, Losio S, Stehling UM, Auriemma F, Malafronte A, Girolamo RD, De Rosa C, Tritto I. Ethylene-co-norbornene copolymerization using a dual catalyst system in the presence of a chain transfer agent. Polymers. 2019;11(3):554.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Boggioni L, Sidari D, Losio S, Stehling UM, Auriemma F, Girolamo UM, De Rosa C, Tritto I. Ethylene–co–norbornene copolymerization in the presence of a chain transfer agent. Eur Polym J. 2018;107:66–4.

    Article  Google Scholar 

  22. Bhriain NN, Brintzinger HH, Ruchatz D, Fink G. Polymeryl exchange between a nsa-zirconocene catalysts for norbornene− ethene copolymerization and aluminum or zincalkyls. Macromolecules. 2005;38:2056–63.

    Article  CAS  Google Scholar 

  23. Białek M, Czaja K, Pietruszka A. Ethylene/1-olefin copolymerization behaviour of vanadium and titanium complexes bearing salen-type ligand. Polym Bull. 2013;70:1499–517.

    Article  Google Scholar 

  24. Bergstrom CH, Sperlich MB, Ruotoistenmaki J, Seppala JV. Investigation of the microstructure of metallocene-catalyzed norbornene–ethylene copolymers using NMR spectroscopy. J Polym Sci part A Polym Chem. 1998;36:1633–8.

    Article  CAS  Google Scholar 

  25. Boggioni L, Losio S, Tritto I. Microstructure of copolymers of norbornene based on assignments of 13CNMR spectra: evolution of a methodology. Polymers. 2018;10:647–71.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Arndt-Rosenau M, Beulich I. Microstructure of ethene/norbornene copolymers. Macromolecules. 1999;32(22):7335–43.

    Article  CAS  Google Scholar 

  27. Yoshida Y, Mohri J, Ishii S, Mitani M, Saito J, Matsui S, Makiomoto H, Mizuno A, Fujita T. Living copolymerization of ethylene with norbornene catalyzed by Bis(Pyrrolide-Imine) titanium complexes with MAO. J Am Chem Soc. 2004;126:12023–32.

    Article  CAS  PubMed  Google Scholar 

  28. Xiang PY, Z. Alternating, gradient, block, and block–gradient copolymers of ethylene and norbornene by Pd–Diimine-Catalyzed living copolymerization. J Polym Sci Part A Polym Chem. 2013;51(3):672–86.

    Article  CAS  Google Scholar 

  29. Massori M, Ahmadjo S, Mortazavi MM, Vakili M. Copolymerization of ethylene б-olefin using MgCl2-ethanol adduct catalysts. J Macromol Sci Part A Pure Appl Chem. 2017;54(3):140–4.

    Article  Google Scholar 

  30. Gao YH, Hao H, Qing W. High norbornene incorporation in ethylene-norbornene copolymerization with a bis(б-lkyloxoimine) titanium-MAO catalyst. Sci Chin Chem. 2010;53(8):1634–40.

    Article  CAS  Google Scholar 

  31. Forsyth JF, Scrivani T, Benavente R, Marestin C, Perena G. Thermal and dynamic mechanical behavior of ethylene/norbornene copolymers with medium norbornene contents. J Appl Polym Sci. 2001;82(9):2159–65.

    Article  CAS  Google Scholar 

  32. Muller AJ, Hernandez Z, Arnal M, Sanchez J. Successive self-nucleation/annealing (SSA): A novel technique to study molecular segregation during crystallization. Polym Bull. 1997;39(4):465–72.

    Article  CAS  Google Scholar 

  33. Muller AJ, Arnal ML. Thermal fractionation of polymers. Prog Polym Sci. 2005;30(5):559–603.

    Article  Google Scholar 

  34. Muller AJ, Michell R, Perez R, Lorenzo A. Successive self-nucleation and annealing (SSA): correct design of thermal protocol and applications. Eur Polym J. 2015;65:132–54.

    Article  CAS  Google Scholar 

  35. Sangroniz L, Wang B, Su Y, Liu G, Cavallo D, Wang D, Muller AJ. Fractionated crystallization in semicrystalline polymers. Prog Polmy Sci. 2021;115:101376.

    Article  CAS  Google Scholar 

  36. Ahmadjo S, Arabi H, Zohuri GH, Nekomanesh M, Nejabat GH, Mortazavi SMMM. Preparation of ethylene/б-olefins copolymers using (2-Rind)2ZrCl2/MCM- (R:Ph, H) catalyst, microstructural study. J Therm Anal Calorim. 2014;116:417–26.

    Article  CAS  Google Scholar 

  37. Hosoda S. Structural distribution of linear low-density polyethylenes. Polym J. 1998;20:383–97.

    Article  Google Scholar 

  38. Hosoda S, Nozue Y, Kawashima Y, Suita K, Seno S, Nagamatsu T. Effect of the sequence length distribution on the lamellar crystal thickness and thickness distribution of polyethylene: perfectlyequisequential ADMET polyethylene vs ethylene/R-olefin copolymer. Macromolecules. 2011;44:313–9.

    Article  CAS  Google Scholar 

  39. Sha H, Zhang X, Harrison IR. A dynamic mechanical thermal analysis (DMTA) study of polyethylene. Thermochim Acta. 1991;192:233–42.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr. H. Komber (IPF Dresden) for recording the NMR spectra.

Author information

Authors and Affiliations

Authors

Contributions

SMMM: Software, Visualization, Writing – original draft, Conceptualization, Validation, Formal analysis, Investigation. GBG: Conceptualization, Validation, Formal analysis, Investigation. HK: Conceptualization, Validation, Investigation, Resources, Writing – Review & Editing. SA: Software, Visualization, Writing Review & Editing. Resources, Conceptualization, Validation, Formal analysis, Investigation. SH: Software, Data curation, Methodology, Visualization, Investigation. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Saeid Ahmadjo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mortazavi, S.M.M., Galland, G.B., Khonakdar, H. et al. Effect of chain transfer agent on microstructure and thermal properties of cyclic olefin copolymer with low comonomer content. J Therm Anal Calorim 147, 13341–13350 (2022). https://doi.org/10.1007/s10973-022-11579-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-022-11579-y

Keywords

Navigation