Skip to main content
Log in

Experimental determination of the heat transfer coefficients of shell-and-tube heat exchangers with different hollow fiber arrangements

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

To maximize heat transfer in heat exchangers (HEs), it is important to enlarge the active surface area and to ensure that the whole surface is in contact with continuously flowing fluids on both sides. Progress in the last two decades led to the creation of polymeric hollow-fiber HEs (PHFHEs) that have an extensive active surface area to volume ratio. Compared to conventional metal HEs, polymeric HEs are lighter and more chemically resistant. Furthermore, the fibers PHFHEs can be organized in a specific arrangement that guarantees high heat transfer efficiency. Six shell-and-tube HEs with three different types of fiber arrangements (parallel fibers, coils, and chaotization) were compared by calculating the heat transfers and the heat transfer coefficients. Pressure drops were also measured. The experiments were conducted with a counter-current mode of operation with constant laminar flow in the fibers and gradually increased flow in the shell. The experiments proved that if the fibers are arranged in a way that secures spacing heat transfer is boosted. Compared to parallel fibers, slight improvements are seen if the fibers are shaped into coils. However, complete chaotization of the fibers is far superior. Chaotized HEs demonstrate a fourfold increase in heat flux and a twofold increase in heat transfer coefficient while reducing the pressure drop by two-thirds compared to similarly sized HEs with parallel fibers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

A:

Surface (m2)

D:

Diameter (mm)

H:

Heat transfer coefficient (Wm2 K1)

P:

Pressure drop (Pa)

Q:

Heat transfer rate (W)

Q/A:

Heat flux (Wm2)

Nu :

Nusselt number

U:

Heat transfer area (m2)

c:

Cold

h:

Hot

in:

Inner

lm:

Log mean

out:

Outer

ov:

Overall

w:

Wall

References

  1. T’Joen C, Park Y, Wang Q, Sommers A, Han X, Jacobi A. A review on polymer heat exchangers for HVAC&R applications. Int J Refrig-Revue Internationale Du Froid, Rev. 2009;32(5):763–79. https://doi.org/10.1016/j.ijrefrig.2008.11.008.

    Article  Google Scholar 

  2. Zhang X, et al. Recent developments in high temperature heat exchangers: a review. Front Heat Mass Transfer. 2018. https://doi.org/10.5098/hmt.11.18.

    Article  Google Scholar 

  3. Van Pham T, Ay H, Sheu TS, Liao MY. Optimal design for a shell-tube heat exchanger of a binary geothermal power plant from economic point of view. Intell Decis Technol-Netherlands. 2017;11(3):285–96. https://doi.org/10.3233/idt-170295.

    Article  Google Scholar 

  4. Gomez-Garcia F, Gauthier D, Flamant G. Design and performance of a multistage fluidised bed heat exchanger for particle-receiver solar power plants with storage. Appl Ener. 2017;190:510–23. https://doi.org/10.1016/j.apenergy.2016.12.140.

    Article  Google Scholar 

  5. Feng XO, Pu J, Yang JK, Chu KH. Energy recovery in petrochemical complexes through heat integration retrofit analysis. Appl Ener. 2011;88(5):1965–82. https://doi.org/10.1016/j.apenergy.2010.12.027.

    Article  CAS  Google Scholar 

  6. Stehlik P, Jegla Z, Kilkovsky B. Possibilities of intensifying heat transfer through finned surfaces in heat exchangers for high temperature applications. Appl Therm Eng. 2014;70(2):1283–7. https://doi.org/10.1016/j.applthermaleng.2014.05.052.

    Article  Google Scholar 

  7. Turkyilmazoglu M. Cooling of particulate solids and fluid in a moving bed heat exchanger. J Heat Transf-Trans Asme. 2019. https://doi.org/10.1115/14044590.

    Article  Google Scholar 

  8. Hepbasli A, Biyik E, Ekren O, Gunerhan H, Araz M. A key review of wastewater source heat pump (WWSHP) systems. Energy Convers Manage. 2014;88:700–22. https://doi.org/10.1016/j.enconman.2014.08.065.

    Article  Google Scholar 

  9. Faes W, et al. Corrosion and corrosion prevention in heat exchangers. Corros Rev. 2019;37(2):131–55. https://doi.org/10.1515/corrrev-2018-0054.

    Article  CAS  Google Scholar 

  10. El-Dessouky HT, Ettouney HM. Plastic compact heat exchangers for single-effect desalination systems. Desalination. 1999;122(2–3):271–89. https://doi.org/10.1016/s0011-9164(99)00048-x.

    Article  CAS  Google Scholar 

  11. Qin YC, Li BA, Wang SC. Experimental investigation of a novel polymeric heat exchanger using modified polypropylene hollow fibers. Ind Eng Chem Resear. 2012;51(2):882–90. https://doi.org/10.1021/ie202075a.

    Article  CAS  Google Scholar 

  12. Kominek J, Zachar M, Guzej M, Bartuli E, Kotrbacek P. Influence of ambient temperature on radiative and convective heat dissipation ratio in polymer heat sinks. Polymers. 2021. https://doi.org/10.3390/polym13142286.

    Article  Google Scholar 

  13. Zarkadas DM, Li B, Sirkar KK, and Asme, "Polymeric Hollow Fiber Heat Exchangers (PHFHEs): A new type of compact heat exchanger for lower temperature applications," Ht2005: proceedings of the Asme Summer Heat Transfer Conference 2005, Vol 4, Proceedings Paper pp. 429–438, 2005, doi: https://doi.org/10.1115/ht2005-72590.

  14. Keoleian G, Miller S, De Kleine R, Fang A, Mosley J. Life cycle material data update for GREET model. Center for sustainable systems: University of Michigan; 2012.

    Google Scholar 

  15. Bulejko P, Bartuli E, Kudelova T, Vancura J. Temperature-dependent burst failure of polymeric hollow fibers used in heat exchangers. Eng Fail Anal. 2021. https://doi.org/10.1016/j.engfailanal.2021.105895.

    Article  Google Scholar 

  16. Chen Z-F. Application prospect of plastic heat exchanger in sewage source heat pump systems. MSIE. 2011;2011:1184–7. https://doi.org/10.1109/MSIE.2011.5707631.

    Article  Google Scholar 

  17. Astrouski I, Raudensky M, Dohnal M. “Fouling of polymeric hollow fiber heat exchanger by wastewater,” Pres15: process Integration. Modell Optimisat Ener Sav Pollut. 2015;45:949–54. https://doi.org/10.3303/cet1545159.

    Article  Google Scholar 

  18. Chen XJ, Su YH, Aydin D, Reay D, Law R, Riffat S. Experimental investigations of polymer hollow fibre heat exchangers for building heat recovery application. Ener Build. 2016;125:99–108. https://doi.org/10.1016/j.enbuild.2016.04.083.

    Article  Google Scholar 

  19. Song LM, Li BA, Zarkadas D, Christian S, Sirkar KK. Polymeric hollow-fiber heat exchangers for thermal desalination processes. Ind Eng Chem Resear. 2010;49(23):11961–77. https://doi.org/10.1021/ie100375b.

    Article  CAS  Google Scholar 

  20. Bohacek J, Raudensky M, Kroulikova T, Karimi-Sibaki E. Polymeric hollow fibers: a supercompact cooling of Li-ion cells. Int J Therm Sci. 2019. https://doi.org/10.1016/j.ijthermalsci.2019.106060.

    Article  Google Scholar 

  21. Kroulikova T, Kudelova T, Bartuli E, Vancura J, Astrouski I. Comparison of a novel polymeric hollow fiber heat exchanger and a commercially available metal automotive radiator. Polymers. 2021. https://doi.org/10.3390/polym13071175.

    Article  Google Scholar 

  22. Naphon P, Wongwises S. A review of flow and heat transfer characteristics in curved tubes. Renew Sustain Ener Rev. 2006;10(5):463–90. https://doi.org/10.1016/j.rser.2004.09.014.

    Article  CAS  Google Scholar 

  23. Menni Y, Ameur H, Sharifpur M, Ahmadi MH. Effects of in-line deflectors on the overall performance of a channel heat exchanger. Eng Appl Computat Fluid Mech. 2021;15(1):512–29. https://doi.org/10.1080/19942060.2021.1893820.

    Article  Google Scholar 

  24. Yan XJ, Li BA, Liu BL, Zhao J, Wang Y, Li H. Analysis of improved novel hollow fiber heat exchanger. Appl Therm Eng. 2014;67(1–2):114–21. https://doi.org/10.1016/j.applthermaleng.2014.03.021.

    Article  CAS  Google Scholar 

  25. Astrouski I, Raudensky M and Ashrae, "Polymeric hollow fiber heat exchangers: liquid-to-gas application," Ashrae Trans, Vol 120, Pt 2, Proceedings Paper vol. 120, p. 9, 2014

  26. Nagase K, Kohori F, Sakai K, Nishide H. Rearrangement of hollow fibers for enhancing oxygen transfer in an artificial gill using oxygen carrier solution. J Membr Sci. 2005;254(1–2):207–17. https://doi.org/10.1016/j.memsci.2005.01.008.

    Article  CAS  Google Scholar 

  27. Raudensky M, Astrouski I, Dohnal M. Intensification of heat transfer of polymeric hollow fiber heat exchangers by chaotisation. Appl Therm Eng. 2017;113:632–8. https://doi.org/10.1016/j.applthermaleng.2016.11.038.

    Article  CAS  Google Scholar 

  28. Payambarpour SA, Nazari MA, Ahmadi MH, Chamkha AJ. Effect of partially wet-surface condition on the performance of fin-tube heat exchanger. Int J Numer Meth Heat Fluid Flow. 2019;29(10):3938–58. https://doi.org/10.1108/hff-07-2018-0362.

    Article  Google Scholar 

  29. Payambarpour SA, Shokouhmand H, Ahmadi MH, Assad ME, Chen LG. Effect of wetness pattern on the fin-tube heat exchanger performance under partially wet-surface condition. Therm Sci Eng Progr. 2020. https://doi.org/10.1016/j.tsep.2020.100619.

    Article  Google Scholar 

  30. Turkyilmazoglu M. Thermal management of parabolic pin fin subjected to a uniform oncoming airflow: optimum fin dimensions. J Therm Anal Calorim. 2021;143(5):3731–9. https://doi.org/10.1007/s10973-020-10382-x.

    Article  CAS  Google Scholar 

  31. Kudelova T, Kroulikova T, Astrouski I, Raudensky M. The influence of the fibres arrangement on heat transfer and pressure drop of polymeric hollow fibre heat exchangers. Acta Polytechnica. 2020;60(2):122–6. https://doi.org/10.14311/ap.2020.60.0122.

    Article  CAS  Google Scholar 

  32. Bartuli E, Kudelova T, Raudensky M. Shell-and-tube polymeric hollow fiber heat exchangers with parallel and crossed fibers. Appl Therm Eng. 2021;182:7. https://doi.org/10.1016/j.applthermaleng.2020.116001.

    Article  CAS  Google Scholar 

  33. Song SS, Shan HT, Liu J, Li BA. Heat transfer study of PVDF hollow fiber heat exchanger for desalination process. Desalination. 2018;446:1–11. https://doi.org/10.1016/j.desal.2018.08.016.

    Article  CAS  Google Scholar 

  34. Lyu SX, Wang C, Zhang CY, Royon L, Guo XF. Experimental characterization of a novel soft polymer heat exchanger for wastewater heat recovery. Int J Heat Mass Transf. 2020. https://doi.org/10.1016/j.ijheatmasstransfer.2020.120256.

    Article  Google Scholar 

  35. Kroulikova T, Astrouski I, Raudensky M, Kudelova T. Heat exchanger for air-liquid application with chaotized polymeric hollow fibres. Appl Ther Eng. 2021. https://doi.org/10.1016/j.applthermaleng.2021.117365.

    Article  Google Scholar 

  36. Carogurska M, Prihoda M, Gallik R. Influence of design parameters of a polypropylene hollow-fibre heat exchanger on its thermal performance. Materiali Tehnologije. 2020;54(6):895–900. https://doi.org/10.17222/mit.2020.117.

    Article  CAS  Google Scholar 

  37. Hein LL, Mortean MVV. Theoretical and experimental thermal performance analysis of an additively manufactured polymer compact heat exchanger. Int Commun Heat Mass Trans. 2021. https://doi.org/10.1016/j.icheatmasstransfer.2021.105237.

    Article  Google Scholar 

  38. Ghaffari-Mosanenzadeh S, Tafreshi OA, Dammen-Brower E, Rad E, Meysami M, Naguib HE. A review on high thermally conductive polymeric composites. Polym Compos. 2022;43(2):692–711. https://doi.org/10.1002/pc.26420.

    Article  CAS  Google Scholar 

  39. Song SS, et al. Reinforced interfacial interaction to fabricate poly(vinylidene fluoride) composites with high thermal conductivity for heat exchangers. Industr Eng Chem Resear. 2020;59(40):17845–55. https://doi.org/10.1021/acs.iecr.0c02836.

    Article  CAS  Google Scholar 

  40. Du CY, et al. Mussel-inspired and magnetic co-functionalization of hexagonal boron nitride in poly(vinylidene fluoride) composites toward enhanced thermal and mechanical performance for heat exchangers. Acs Appl Mater Interf. 2018;10(40):34674–82. https://doi.org/10.1021/acsami.8b14154.

    Article  CAS  Google Scholar 

  41. Bhatti MM, Michaelides EE. Study of Arrhenius activation energy on the thermo-bioconvection nanofluid flow over a Riga plate. J Therm Anal Calorim. 2021;143(3):2029–38. https://doi.org/10.1007/s10973-020-09492-3.

    Article  CAS  Google Scholar 

  42. Bhatti MM, Beg OA, Abdelsalam SI. Computational framework of magnetized MgO-Ni/Water-based stagnation nanoflow past an elastic stretching surface: application in solar energy coatings. Nanomaterials. 2022. https://doi.org/10.3390/nano12071049.

    Article  Google Scholar 

  43. Zhang LJ, Bhatti MM, Michaelides EE, Marin M, Ellahi R. Hybrid nanofluid flow towards an elastic surface with tantalum and nickel nanoparticles, under the influence of an induced magnetic field. Eur Phys J-Spec Top. 2022;231(3):521–33. https://doi.org/10.1140/epjs/s11734-021-00409-1.

    Article  CAS  Google Scholar 

  44. Zolghadri A, Maddah H, Ahmadi MH, Sharifpur M. Predicting parameters of heat transfer in a shell and tube heat exchanger using aluminum oxide nanofluid with artificial neural network (ANN) and self-organizing map (SOM). Sustainability. 2021. https://doi.org/10.3390/su13168824.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Ministry of Education, Youth and Sports of the Czech Republic under OP RDE Grant No. CZ.02.1.01/0.0/0.0/16_019/0000753 “Research centre for low-carbon energy technologies”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alan Strunga.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Strunga, A., Kroulíková, T., Bartuli, E. et al. Experimental determination of the heat transfer coefficients of shell-and-tube heat exchangers with different hollow fiber arrangements. J Therm Anal Calorim 147, 14787–14796 (2022). https://doi.org/10.1007/s10973-022-11576-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-022-11576-1

Keywords

Navigation