Skip to main content
Log in

An empirical formula to predict the overall irreversibility of counter-flow premixed flames of methane and its mixtures

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

A novel method for estimating the non-equilibrium entropy generated in a premixed stretched methane flame is proposed. Counter-flow premixed methane flames were numerically investigated. The flame structure in terms of species, species production rate, and temperature was modeled using the San Diego mechanism with multicomponent diffusion. The local entropy generation of flames due to heat conduction, mass diffusion, viscous dissipation, and chemical reaction and the total irreversibility induced were analyzed for flames with various equivalence ratios at various temperatures, pressures, and counter-flow strain rates. The strain rate had a weak effect on the mass diffusion irreversibility and thermal conduction irreversibility but a strong effect on the chemical irreversibility. The overall irreversibility was highest at the equivalence ratio of 1.1. The heat conduction irreversibility, mass diffusion irreversibility, and chemical irreversibility all increased as the pressure was increased, and the chemical irreversibility increased as the temperature was increased. In all studied cases, the flame thickness decreased as the pressure or temperature was increased, and the flame thickness was inversely related to the non-equilibrium irreversibility. An empirical formula for predicting the irreversibility as a function of flame thickness was derived. The formula is valid not only for pure methane premixed flames but also for binary or triply blended fuel mixtures of methane, carbon monoxide, and hydrogen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Abbreviations

a :

Strain rate (s−1)

D :

Diffusivity (m2s−1)

F :

Function of x denotes axial velocity

G :

Function of x denotes radial velocity

H :

Pressure derivative in radial

h :

Specific enthalpy (kJ kg−1)

i :

Specific irreversibility (kJ kg−1)

I :

Total specific irreversibility (kJ kg−1)

P :

pressure (atm)

R :

Universal gas constant (kJ K−1 kmol−1)

r :

Radial direction

s :

Specific entropy (kJ kg−1 K−1)

T :

Temperature (K)

u :

Axial velocity of counter-flow premixed flame (m s−1)

v :

Radial velocity of counter-flow premixed flame s−1

W :

Molar weight (g mol−1)

X :

Molar fraction

x :

Axial direction

Y :

Mass fraction

δ :

Flame thickness (mm)

λ :

Thermal conductivity (W m−1 K−1)

μ :

Chemical potential (kJ kg−1)

ρ :

Density (kg m−3)

τ :

Viscous stress tensor

ϕ :

Equivalence ratio

ω :

Reaction rate (kmol m−3 s−1)

0:

Properties at standard state

chem:

Chemistry

cond:

Conduction

diff:

Mass diffusion

flame:

Flame

in:

Reactants at inlet

k:

Species k

max:

Maximum

mix:

Mixtures

visc:

Viscosity

x:

Axial direction of the counter-flow burner

:

Dot over symbol denotes time rate

_ :

Bar over symbol denotes average

T :

Thermal

References

  1. Parsa S, Neshat E. Thermodynamic and statistical analysis on the effect of exhaust gas recirculation on waste heat recovery from homogeneous charge compression ignition engines. J Therm Anal Calorim. 2022;147:6349–61. https://doi.org/10.1007/s10973-021-10923-y.

    Article  CAS  Google Scholar 

  2. Lu JJ, Chen WH. Investigation on the ignition and burnout temperatures of bamboo and sugarcane bagasse by thermogravimetric analysis. Appl Eng. 2015;160:49–57. https://doi.org/10.1016/j.apenergy.2015.09.026.

    Article  Google Scholar 

  3. Naqvi SR, Tariq R, Hameed Z, Ali I, Naqvi M, Chen WH, Ceylan S. Pyrolysis of high ash sewage sludge: kinetics and thermodynamic analysis using Coats-Redfern method. Renew Energ. 2019;131:854–60. https://doi.org/10.1016/j.renene.2018.07.094.

    Article  CAS  Google Scholar 

  4. Chen WH, Chen KH, Ubando AT, Lee WJ, Chio MH. Redox degrees of iron-based oxygen carriers in cyclic chemical looping combustion using thermodynamic analysis. Chem Eng J. 2021;426:130834. https://doi.org/10.1016/j.renene.2018.07.094.

    Article  CAS  Google Scholar 

  5. Lakhfif F, Nemouchi Z, Mebarek-Oudina F. Numerical investigation of the different spray combustion models under diesel condition. Int J Appl Eng Res. 2016;11(18):9393–9.

    Google Scholar 

  6. Sciacovelli A, Verda V, Sciuba E. Entropy generation analysis as a design tool- a review. Renew Sustain Energy Rev. 2015;43:1167–81. https://doi.org/10.1016/j.rser.2014.11.104.

    Article  Google Scholar 

  7. Dincer I, Rosen MA. Exergy: energy, environment and sustainable development. Oxford: Elsevier Science; 2013.

    Google Scholar 

  8. Wu CY, Yu WC, Cheng CC. Characteristics of dimethyl ether oxidation in a preheated Pt-γ-Al2O3 catalytic reactor. Combust Sci Technol. 2020. https://doi.org/10.1080/00102202.2020.1748608.

    Article  Google Scholar 

  9. Karki P, Perumal DA, Yadav AK. Comparative studies on air, water and nanofluids based Rayleigh-Benard natural convection using lattice Boltzmann method: CFD and exergy analysis. J Therm Anal Calorim. 2022;147:1487–503. https://doi.org/10.1007/s10973-020-10496-2.

    Article  CAS  Google Scholar 

  10. Shinde BJ, Karunamurthy K, Ismail S. Thermodynamic analysis of gasoline-fueled electronic fuel injection digital three-spark ignition (EFI-DTSI) engine. J Therm Anal Calorim. 2022;141:2355–67. https://doi.org/10.1007/s10973-020-10120-3.

    Article  CAS  Google Scholar 

  11. Koruyucu E, Ekici S, Karakoc TH. Performing thermodynamic analysis by simulating the general characteristics of the two-spool turbojet engine suitable for drone and UAV propulsion. J Therm Anal Calorim. 2021;145:1303–15. https://doi.org/10.1007/s10973-020-10449-9.

    Article  CAS  Google Scholar 

  12. Wu CY, Hu BY. Charaterisation of the effect of water content on the methanol spray combustion. Int J Exergy. 2022;38(2):139–57. https://doi.org/10.1504/IJEX.2022.123596.

    Article  Google Scholar 

  13. Hajibashi FA, Arabkoohsar A, Babaelahi M. Risk assessment, dynamic analysis and multi-objective optimization of a solar-driven hybrid gas/steam power plant. J Therm Anal Calorim. 2021;145:955–71. https://doi.org/10.1007/s10973-020-10221-z.

    Article  CAS  Google Scholar 

  14. Nourpour M, Manesh MHK. Modeling and 6E analysis of a novel quadruple combined cycle with turbocompressor gas station. J Therm Anal Calorim. 2021;147:5165–97. https://doi.org/10.1007/s10973-021-10898-w.

    Article  CAS  Google Scholar 

  15. Wu CY, Chen KH, Yang SY. Experimental study of porous metal burners for domestic stove applications. Energy Convers Manag. 2014;77:380–8. https://doi.org/10.1016/j.enconman.2013.10.002.

    Article  CAS  Google Scholar 

  16. İlbaş M, Karyeyen S. Modelling of combustion performances and emission characteristics of coal gases in a model gas turbine combustor. Int J Energy Res. 2014;38:1171–80. https://doi.org/10.1002/er.3135.

    Article  CAS  Google Scholar 

  17. Cheng TS, Chao YC, Chen CP, Wu CY. Further analysis of chemical kinetic structure of a standoff microjet methane diffusion flame near extinction. Combust Flame. 2008;152(3):461–7. https://doi.org/10.1016/j.combustflame.2007.10.007.

    Article  CAS  Google Scholar 

  18. Aissa A, Slimani MEA, Mebarek-Oudina F, Fares R, Zaim A, Kolsi L, Sahnoun M, Ganaoui ME. Pressure-driven gas flows in micro channels with a slip boundary: A numerical investigation. Fluid Dyn Mater Process. 2020;16(2):147–59. https://doi.org/10.32604/fdmp.2020.04073.

    Article  Google Scholar 

  19. Arpaci VS, Selamet A. Entropy production in flames. Combust Flame. 1988;73(3):251–9. https://doi.org/10.1016/0010-2180(88)90022-3.

    Article  CAS  Google Scholar 

  20. Dunbar WR, Lior N. Sources of combustion irreversibility. Combust Sci Technol. 1994;103:41–63. https://doi.org/10.1080/00102209408907687.

    Article  CAS  Google Scholar 

  21. Nishida K, Takagi T, Kinoshita S. Analysis of entropy generation and exergy loss during combustion. Proc Combust Inst. 2002;29:869–74. https://doi.org/10.1016/S1540-7489(02)80111-0.

    Article  CAS  Google Scholar 

  22. Liu Y, Zhang J, Ju D, Huang Z, Han D. Analysis of exergy losses in laminar premixed flames of methane/hydrogen blends. Int J Hydrog Energy. 2019;44:24043–53. https://doi.org/10.1016/j.ijhydene.2019.07.123.

    Article  CAS  Google Scholar 

  23. Zhang J, Han D, Huang Z. Second-law thermodynamic analysis for premixed hydrogen flames with diluents of argon/nitrogen/carbon dioxide. Int J Hydrog Energy. 2019;44:5020–9. https://doi.org/10.1016/j.ijhydene.2019.01.041.

    Article  CAS  Google Scholar 

  24. Acampra L, Marra FS. Second law thermodynamic analysis of syngas premixed flames. Int J Hydrog Energy. 2020;45:12185–202. https://doi.org/10.1016/j.ijhydene.2020.02.142.

    Article  CAS  Google Scholar 

  25. Zhang J, et al. Second-law thermodynamic analysis in premixed flames of ammonia and hydrogen binary fuels. J Eng Gas Turbines Power. 2019;141:071007. https://doi.org/10.1115/1.4042412.

    Article  CAS  Google Scholar 

  26. Liu Y, et al. Second-law thermodynamic analysis on non-premixed counterflow methane flames with hydrogen addition. J Therm Anal Calorim. 2020;139:2577–83. https://doi.org/10.1007/s10973-019-08583-0.

    Article  CAS  Google Scholar 

  27. Kim N, Kim Y, Jaafar MNM, Rahim MR, Said M. Effects of hydrogen addition on structure and NO formation of highly CO-Rich syngas counterflow nonpremixed flames under MILD combustion regime. Int J Hydrog Energy. 2021;46:10518–34. https://doi.org/10.1016/j.ijhydene.2020.12.120.

    Article  CAS  Google Scholar 

  28. Liu Y, Chen S, Yang B, Liu K, Zheng C. First and second thermodynamic-law comparison of biogas MILD oxy-fuel combustion moderated by CO2 or H2O. Energy Convers Manag. 2015;106:625–34. https://doi.org/10.1016/j.enconman.2015.09.076.

    Article  CAS  Google Scholar 

  29. Liu D, Wang H, Zhang Y, Liu H, Zheng Z, Yao M. On the entropy generation and exergy loss of laminar premixed flame under engine-relevant conditions. Fuel. 2021;283:119245. https://doi.org/10.1016/j.fuel.2020.119245.

    Article  CAS  Google Scholar 

  30. Jiang D, Yang W, Chua KJ. Entropy generation analysis of H2/air premixed flame Ćin micro-combustors with heat recuperation. Chem Eng Sci. 2013;98:265–72. https://doi.org/10.1016/j.ces.2013.05.038.

    Article  CAS  Google Scholar 

  31. Jiang D, Yang W, Teng J. Entropy generation analysis of fuel lean premixed CO/H2/air flames. Int J Hydrog Energy. 2015;40:5210–20. https://doi.org/10.1016/j.ijhydene.2015.02.082.

    Article  CAS  Google Scholar 

  32. Wang W, Zuo Z, Liu J, Yang W. Entropy generation analysis of fuel premixed CH4/H2/air flames using multistep kinetics. Int J Hydrog Energy. 2016;41:20744–52. https://doi.org/10.1016/j.ijhydene.2016.08.103.

    Article  CAS  Google Scholar 

  33. Zuo W, Zhang Y, Li J, Li Q, He Z. A modified micro reactor fueled with hydrogen for reducing entropy generation. Int J Hydrog Energy. 2019;44:27984–94. https://doi.org/10.1016/j.ijhydene.2019.09.009.

    Article  CAS  Google Scholar 

  34. Datta A. Effects of gravity on structure and entropy generation of confined laminar diffusion flames. Int J Therm Sci. 2005;44:429–40. https://doi.org/10.1016/j.ijthermalsci.2004.10.003.

    Article  CAS  Google Scholar 

  35. Briones AM, Mukhopadhyay A, Aggarwal SK. Analysis of entropy generation in hydrogen-enriched methane–air propagating triple flames. Int J Hydrog Energy. 2009;34:1074–83. https://doi.org/10.1016/j.ijhydene.2008.09.103.

    Article  CAS  Google Scholar 

  36. Dressler L, Nicolai H, Agrebi S, Ries F, Sadiki A. Computation of entropy production in stratified flames based on chemistry tabulation and an eulerian transported probability density function approach. Entropy. 2022;24:615. https://doi.org/10.3390/e24050615.

    Article  CAS  Google Scholar 

  37. Yan H, Tang G, Wang C, Li L, Zhou Y, Zhang Z. Thermodynamics irreversibilities analysis of oxy-fuel diffusion flames: the effect of oxygen concentration. Entropy. 2022;24:205. https://doi.org/10.3390/e24020205.

    Article  CAS  Google Scholar 

  38. Ghai SK, Ahmed U, Chakraborty N, Klein M. Entropy generation during head-on interaction of premixed flames with inert walls within turbulent boundary layers. Entropy. 2022;24:463. https://doi.org/10.3390/e24040463.

    Article  Google Scholar 

  39. Rakopoulos CD, Michos CN. Generation of combustion irreversibilities in a spark ignition engine under biogas–hydrogen mixtures fueling. Int J Hydrog Energy. 2009;34:4422–37. https://doi.org/10.1016/j.ijhydene.2009.02.087.

    Article  CAS  Google Scholar 

  40. Chen S. Analysis of entropy generation in counter-flow premixed hydrogen–air combustion. Int J Hydrog Energy. 2010;35:1401–11. https://doi.org/10.1016/j.ijhydene.2009.11.080.

    Article  CAS  Google Scholar 

  41. Chen S, Li J, Han H, Liu Z, Zheng C. Effects of hydrogen addition on entropy generation in ultra-lean counter-flow methane-air premixed combustion. Int J Hydrog Energy. 2010;35:3891–902. https://doi.org/10.1016/j.ijhydene.2010.01.120.

    Article  CAS  Google Scholar 

  42. Chen S, Han H, Liu Z, Li J, Zheng C. Analysis of entropy generation in non-premixed hydrogen versus heated air counter-flow combustion. Hydrog Energy. 2010;35:4736–46. https://doi.org/10.1016/j.ijhydene.2010.02.113.

    Article  CAS  Google Scholar 

  43. Chen S, Mi J, Liu H, Zheng C. First and second thermodynamic-law analyses of hydrogen-air counter-flow diffusion combustion in various combustion modes. Hydrog Energy. 2012;37:5234–45. https://doi.org/10.1016/j.ijhydene.2011.12.039.

    Article  CAS  Google Scholar 

  44. Safer K, Ouadha A, Tabet F. Entropy generation in turbulent syngas counterflow diffusion flames. Int J Hydrog Energy. 2017;42:29532–44. https://doi.org/10.1016/j.ijhydene.2017.08.217.

    Article  CAS  Google Scholar 

  45. Johnson RF, VanDine AC, Esposito GL, Chelliah HK. On the axisymmetric counterflow flame simulations: is there an optimal nozzle diamter and separation distance to apply quasi one dimentsional theory? Combust Sci Technol. 2015;187:37–59. https://doi.org/10.1080/00102202.2014.972503.

    Article  CAS  Google Scholar 

  46. Lockett RD, Boulanger B, Harding SC, Greenhalgh DA. The structrue and stability of the lmainar counter-flow partially premixed methane/air triple flame. Combust Flame. 1999;119(1–2):109–20. https://doi.org/10.1016/S0010-2180(99)00046-2.

    Article  CAS  Google Scholar 

  47. Puri IK, Seshadri K. The extinction of counterflow premixed flames burning diluted methane-air, and diluted propane-air mixtures. Combust Sci Technol. 1987;53(1):55–65. https://doi.org/10.1080/00102208708947019.

    Article  CAS  Google Scholar 

  48. Mokrin S, Fursenko R, Minaev S. Thermal-diffusive stability of counterflow premixed flames at low lewis numbers. Adv Mat Res. 2014;1040:608–13. https://doi.org/10.4028/www.scientific.net/AMR.1040.608.

    Article  CAS  Google Scholar 

  49. San Diego Mecahnism. 2021. http://web.eng.ucsd.edu/mae/groups/combustion/mechanism.html. Accessesed 16 Jul 2021.

  50. Nakamura H, Takahashi H, Tezuka T, Hasegawa S, Maruta K, Abe K. Effects of CO-to-H2 ratio and diluents on ignition properties of syngas examined by weak flames in a micro flow reactor with a controlled temperature profile. Combust Flame. 2016;172:94–104. https://doi.org/10.1016/j.combustflame.2016.06.024.

    Article  CAS  Google Scholar 

  51. Xie Y, Lv N, Li Q, Wang J. Effects of CO addition on laminar flame characteristics and chemical reactions of H2 and CH4 in oxy-fuel (O2/CO2) atmosphere. Int J Hydrog Energy. 2020;45:20472–81. https://doi.org/10.1016/j.ijhydene.2019.10.138.

    Article  CAS  Google Scholar 

  52. Quattrocchi S, Aggarwal SK, Katta VR. Liftoff and blowout characteristics of laminar syngas nonpremixed flames. Int J Hydrog Energy. 2018;43:6421–33. https://doi.org/10.1016/j.ijhydene.2018.01.194.

    Article  CAS  Google Scholar 

  53. Wu CK, Law CK. On the determination of laminar flame speeds from stretched flames. Symp Combust Proc. 1985;20(1):1941–9. https://doi.org/10.1016/S0082-0784(85)80693-7.

    Article  Google Scholar 

  54. Lowry W, de Vries J, Krejci M, Petersen E, Serinyel Z, Metcalfe W, Curran H, Bourque G. Laminar flame speed measurements and modeling of pure alkanes and alkane blends at elevated pressures. J Eng Gas Turbines Power. 2011;133(9):091501. https://doi.org/10.1115/1.4002809.

    Article  CAS  Google Scholar 

  55. Vagelopoulos CM, Egolfopoulos FN. Direct experimental determination of laminar flame speeds. Symp Combust Proc. 1998;27:513–9. https://doi.org/10.1016/S0082-0784(98)80441-4.

    Article  Google Scholar 

  56. Gu XJ, Haq MZ, Lawes M, Woolley R. Laminar burning velocity and Markstein lengths of methane–air mixtures. Combust Flame. 2000;121:41–58. https://doi.org/10.1016/S0010-2180(99)00142-X.

    Article  CAS  Google Scholar 

  57. Bosschaart KJ, de Goey LPH. The laminar burning velocity of flames propagating in mixtures of hydrocarbons and air measured with the heat flux method. Combust Flame. 2004;136:261–9. https://doi.org/10.1016/j.combustflame.2003.10.005.

    Article  CAS  Google Scholar 

  58. Park O, Veloo PS, Liu N, Egolfopoulos N. Combustion characteristics of alternative gaseous fuels. Proc Combust Inst. 2011;33:887–94. https://doi.org/10.1016/j.proci.2010.06.116.

    Article  CAS  Google Scholar 

  59. Rozenchan G, Zhu DL, Law CK, Tse SD. Outward propagation, burning velocities, and chemical effects of methane flames up to 60 ATM. Proc Combust Inst. 2002;29:1461–70. https://doi.org/10.1016/S1540-7489(02)80179-1.

    Article  CAS  Google Scholar 

  60. Hassan MI, Aung KT, Faeth GM. Measured and predicted properties of laminar premixed methane/air flames at various pressures. Combust Flame. 1998;115:539–50. https://doi.org/10.1016/S0010-2180(98)00025-X.

    Article  CAS  Google Scholar 

  61. Dirrenberger P, Gall HL, Bounaceur R, Herbinet O, Glaude P-A, Konnov A, Battin-Leclerc F. Measurements of laminar flame velocity for components of natural gas. Energy Fuels. 2011;25:3875–84. https://doi.org/10.1021/ef200707h.

    Article  CAS  Google Scholar 

  62. Pizzuti L, Martins CA, dos Santos LR, Guerra DRS. Laminar burning velocity of methane/air mixtures and flame propagation speed close to the chamber wall. Energy Procedia. 2017;120:126–33. https://doi.org/10.1016/j.egypro.2017.07.145.

    Article  CAS  Google Scholar 

  63. Wu CY, Chao YC, Cheng TS, Chen CP, Ho CT. Effects of CO addition on the characteristics of laminar premixed CH4/air opposed-jet flames. Combust Flame. 2009;156:362–73. https://doi.org/10.1016/j.combustflame.2008.10.028.

    Article  CAS  Google Scholar 

  64. Cheng TS, Chang YC, Chao YC, Chen GB, Li YH, Wu CY. An experimental and numerical study on characteristics of laminar premixed H2/CO/CH4/air flames. Int J Hydrog Energy. 2011;36:13207–17. https://doi.org/10.1016/j.ijhydene.2011.07.077.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the Ministry of Science and Technology, Taiwan, under Grant no. MOST 110-2221-E-006 -093. We thank Research Center for Energy Technology and Strategy, National Cheng King University, for providing computational resources.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chih-Yung Wu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 673 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, CR., Wu, CY. An empirical formula to predict the overall irreversibility of counter-flow premixed flames of methane and its mixtures. J Therm Anal Calorim 147, 14587–14599 (2022). https://doi.org/10.1007/s10973-022-11573-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-022-11573-4

Keywords

Navigation