Skip to main content

Comparison of flame spread characteristics between dense and loose fuel arrays

Abstract

This study investigates experimentally the fuel bed width effect on concurrent flame spread over discrete fuels. Two representative configurations, dense arrays spaced 3 mm and loose arrays spaced 6 mm, are concerned herein. Regular birch rod arrays were designed by varying five kinds of column numbers (denoted by n, 3, 5, 7, 9, and 11) and five slopes (θ, 0, 15°, 30°, 45°, and 60°). Results show that flame spread rate (FSR) of dense arrays is lower than that of loose arrays. A predicted model of FSR is also developed, which is in good agreement with experimental results. Moreover, compared with the loose arrays, the decay of heat flux in the thermal plume region behind the pyrolysis zone is more rapid for dense arrays. For dense arrays, with increasing inclination angle, maximum convective heat flux, mass loss rate, and flame length decrease first and then increase at n > 5, but have an increasing tendency for loose arrays. Furthermore, the fuel consumption efficiency of loose arrays has an obvious superiority over dense arrays when θ > 15˚. In addition, dimensionless correlations between flame length and heat release rate are proposed both for dense and loose arrays.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Abbreviations

A :

Coefficient in Eq. (2)

c p :

Specific heat (J g−1 K−1)

d :

Fuel thickness (mm)

D :

Flame thickness (mm)

D eq :

Equivalent diameter of burning zone (mm)

f :

Packing ratio

F :

View factor

h :

Convective heat transfer coefficient (W m−2 K)

∆H c :

Heat of combustion (kJ g−1)

ks :

Thermal conductivity (W m−1 k−1)

l :

Fuel length (mm)

l a :

Array length (mm)

L :

Characteristic length (mm)

L f :

Flame length (mm)

L f * :

Dimensionless flame length (mm)

m :

Row number

\(\dot{m}\) :

Mass loss rate (g s−1)

n :

Column number

Nu :

Nusselt number

\(\dot{q}^{\prime\prime}_{{{\text{in}}}}\) :

Incident heat flux (kW m−2)

\(\dot{q}^{\prime\prime}_{{\text{sur,rad}}}\) :

Radiant heat flux received by top surface (kW m−2)

\(\dot{q}_{{_{{\text{sur,conv}}} }}^{\prime \prime }\) :

Convective heat flux received by top surface (kW m−2)

\(\dot{q}_{{_{f} }}^{\prime \prime }\) :

Measured heat flux (kW m−2)

\(\dot{q}_{{_{f} }}^{\prime \prime *}\) :

Dimensionless heat flux

\(\dot{Q}\) :

Heat release rate (kW)

\(\dot{Q}^{*}\) :

Dimensionless heat release rate

Ra:

Rayleigh number

S:

Spacing (mm)

T :

Temperature (K)

t ig :

Ignition time (s)

t sp :

Spreading time (s)

t b :

Burnout time (s)

v f :

Flame spread rate (mm s−1)

W :

Array width (mm)

x :

Distance from the pyrolysis front (mm)

x py :

Pyrolysis length (mm)

α :

Thermal diffusivity (m2 s−1)

β :

Thermal expansion coefficient (K−1)

γ :

Included angle of pyrolysis front (°)

ɛ :

Flame emissivity

ϕ :

Included angle between flame and vertical direction (°)

θ :

Inclination angle (°)

θ f :

Included angle between flame plane and target (°)

v :

Kinematic viscosity (m2 s−1)

η :

Fuel consumption efficiency

ρ :

Density (kg m−3)

δ p :

Thermal penetration depth (mm)

f :

Flame

s :

Solid

p :

Pyrolysis

:

Ambient

References

  1. Finney MA. The wildland fire system and challenges for engineering. Fire Saf J. 2021;120: 103085.

    Article  Google Scholar 

  2. Cristina GD, Skowronski NS, Simeoni A, Rangwala AS, Im S. Flame spread predictions over linear discrete fuel arrays using an empirical B-number model and stagnation point flow. Combust Flame. 2021;234: 111644.

    Article  CAS  Google Scholar 

  3. Gollner MJ, Miller CH, Tang W, Singh AV. The effect of flow and geometry on concurrent flame spread. Fire Saf J. 2017;91:68–78.

    Article  Google Scholar 

  4. Finney MA, Cohen JD, McAllister SS, Jolly WM. On the need for a theory of wildland fire spread. Int J Wildland Fire. 2013;22:25–36.

    Article  Google Scholar 

  5. Vogel M, Williams FA. Flame propagation along matchstick arrays. Combust Sci Technol. 1970;1:429–36.

    Article  Google Scholar 

  6. Bu R, Zhou Y, Shi L, Fan C. Experimental study on combustion and flame spread characteristics in horizontal arrays of discrete fuels. Combust Flame. 2021;225:136–46.

    Article  CAS  Google Scholar 

  7. Jiang L, Zhao Z, Tang W, Miller C, Sun J, Gollner MJ. Flame spread and burning rates through vertical arrays of wooden dowels. Proc Combust Inst. 2019;37:3767–74.

    Article  Google Scholar 

  8. Gross D. Experiments on the burning of cross piles of wood. J Res Natl Bur Stand Sect C. 1962;66:99–105.

    Google Scholar 

  9. Delichatsios MA. Fire growth rates in wood cribs. Combust Flame. 1976;27:267–78.

    Article  Google Scholar 

  10. Fons WL, Clements HB, George PM. Scale effects on propagation rate of laboratory crib fires. Sympo (Int) Combust. 1963;9(1):860–6. https://doi.org/10.1016/S0082-0784(63)80092-2.

    Article  Google Scholar 

  11. Tokura I, Saito H, Kishinami K, Muramoto K. An experimental study of free convection heat transfer from a horizontal cylinder in a vertical array set in free space between parallel walls. J Heat transfer. 1983;105:102–7.

    Article  Google Scholar 

  12. Bu R, Shi L, Zhou Y. Identifying the criterion for discrete flame spread over single-row birch rods. Fire Saf J. 2021;120: 103116.

    Article  Google Scholar 

  13. Weber RO. A model for fire propagation in arrays. Mathl Comput Modelling. 1990;13:95–102.

    Article  Google Scholar 

  14. Gollner MJ, Xie Y, Lee M, Nakamura Y, Rangwala AS. Burning behavior of vertical matchstick arrays. Combust Sci Technol. 2012;184:585–607.

    Article  CAS  Google Scholar 

  15. Park J, Brucker J, Seballos R, Kwon B, Liao Y. Concurrent flame spread over discrete thin fuels. Combust Flame. 2018;191:116–25.

    Article  CAS  Google Scholar 

  16. Bu R, Zhou Y, Fan C, Wang Z. Understanding the effects of inclination angle and fuel bed width on concurrent flame spread over discrete fuel arrays. Fuel. 2021;289: 119924.

    Article  CAS  Google Scholar 

  17. Morandini F, Silvani X, Dupuy J, Susset A. Fire spread across a sloping fuel bed: flame dynamics and heat transfers. Combust Flame. 2018;190:158–70.

    Article  CAS  Google Scholar 

  18. Hwang CC, Xie Y. Flame propagation along matchstick arrayson, inclined base boards. Combust Sci and Technol. 1984;42:1–12.

    Article  Google Scholar 

  19. Finney MA, Cohen JD, Grenfell IC, Yedinak KM. An examination of fire spread thresholds in discontinuous fuel beds. Int J Wildland Fire. 2010;19:163–70.

    Article  Google Scholar 

  20. He Q, Liu N, Xie X, Zhang L, Zhang Y, Yan W. Experimental study on fire spread over discrete fuel bed-Part I: effects of packing ratio. Fire Saf J. 2021;126: 103470.

    Article  CAS  Google Scholar 

  21. Jiang L, Miller CH, Gollner MJ, Sun J. Sample width and thickness effects on horizontal flame spread over a thin PMMA surface. Proc Combust Inst. 2017;36:2987–94.

    Article  CAS  Google Scholar 

  22. Cui W, Liao YT. Experimental study of upward flame spread over discrete thin fuels. Fire Saf J. 2019;110: 102907.

    Article  CAS  Google Scholar 

  23. Quintiere J. Fundamentals of fire phenomena. New York: Wiley; 2006.

    Book  Google Scholar 

  24. Babrauskas V. Ignition handbook: Principles and applications to fire safety engineering, fire investigation, risk management and forensic science, Fire Science Publishers, 2003

  25. Pastor FE, Rigueiro A, Zárate LL, Gimenez A, Arnaldos AJ, Planas CE. Experimental methodology for characterizing flame emissivity of small-scale forest fires using infrared thermography techniques. In: IV International conference on forest fire research 2002 Wildland Fire Safety Summit, 2002.

  26. Rossi JL, Chetehouna K, Collin A, Moretti B, Balbi JH. Simplified flame models and prediction of the thermal radiation emitted by a flame front in an outdoor fire. Combust Sci Technol. 2010;182:1457–77.

    Article  CAS  Google Scholar 

  27. Pagni PJ, Peterson TG Flame spread through porous fuels, In: Proceedings of 14th symposium (international) on combustion, Pittsburgh, p. 1099−107.

  28. Incropera FP, DeWitt DP, Bergman TL, Lavine AS. Fundamentals of heat and mass transfer. New York: Wiley; 2007.

    Google Scholar 

  29. Liu N, Wu J, Chen H, Xie X, Zhang L, Yao B, Zhu J, Shan Y. Effect of slope on spread of a linear flame front over a pine needle fuel bed: experiments and modelling. Int J Wildland Fire. 2014;23:1087–96.

    Article  Google Scholar 

  30. Rothermel RC. A mathematical model for predicting fire spread in wildland fuels. United Sates department of agriculture, forest service research INT-115, 1972.

  31. Noble R, Baby GAV, Gill AM. McArthur’s fire-danger meters expressed as equations. Aust J Ecol. 1980;5:201–3.

    Article  Google Scholar 

  32. Viegas DX. On the existence of a steady state regime for slope and wind driven fires. Int J Wildland Fire. 2004;13:101–17.

    Article  Google Scholar 

  33. Ma Y, Hu L, Huang Y, Zhu N, Fujita O. Effect of sample thickness on concurrent steady spread behavior of floor- and ceiling flames. Combust Flame. 2021;223: 111600.

    Article  Google Scholar 

  34. Gollner MJ, Huang X, Cobian J, Rangwala AS, Williams FA. Experimental study of upward flame spread of an inclined fuel surface. Proc Combust Inst. 2013;34:2531–8.

    Article  CAS  Google Scholar 

  35. Heskestad G. Fire plumes, flame height, and air entrainment. In: Hurley MJ, Gottuk D, Hall JR, Harada K, Kuligowski E, Puchovsky M, Torero J, Watts JM, Wieczorek C, editors. SFPE handbook of fire protection engineering. New York: Springer; 2016. p. 396–428. https://doi.org/10.1007/978-1-4939-2565-0_13.

    Chapter  Google Scholar 

  36. Zukoski EE, Cetegen BM, Kubota T. Visible structure of buoyant diffusion flames. Sympo (Int) Combust. 1985;20(1):361–6. https://doi.org/10.1016/S0082-0784(85)80522-1.

    Article  Google Scholar 

  37. Zukoski EE, Kubota T, Cetegen B. Entrainment in fire plumes. Fire Saf J. 1980;3:107–21.

    Article  Google Scholar 

  38. Jiang L, He J, Sun J. Sample width and thickness effects on upward flame spread over PMMA surface. J Hazard Mater. 2018;342:114–20.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 51804338, 51974361), Natural Science Foundation of Hunan Province (No. 2021JJ30860) and Fundamental Research Funds for the Central Universities of Central South University (No. 2021zzts0238).

Author information

Authors and Affiliations

Authors

Contributions

RB, YZ contributed to conceptualization; RB and YZ contributed to methodology; RB and XZ contributed to formal analysis and investigation; RB contributed to writing-original draft preparation; YZ and XZ contributed to writing review and editing; YZ and CF contributed to funding acquisition; YZ and CF contributed to resources; and YZ and CF supervised the study.

Corresponding author

Correspondence to Yang Zhou.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bu, R., Fan, C. & Zhou, Y. Comparison of flame spread characteristics between dense and loose fuel arrays. J Therm Anal Calorim 147, 13913–13924 (2022). https://doi.org/10.1007/s10973-022-11570-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-022-11570-7

Keywords

  • Discrete fuels
  • Flame spread
  • Fuel bed width
  • Inclination angle
  • Heat flux