Skip to main content
Log in

Calorimetry characterization and crystallization modelling of wax-based mixtures under isokinetic and non-isokinetic cooling

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Characterization and modelling of wax crystallization must be carefully addressed to understand wax-oil organogels formation. During casting process of wax-based mixtures, wax crystallization occurs under concomitant non-constant and high cooling rates. In this study, the crystallization kinetics of two representative wax-based materials were studied by power-compensated Differential Scanning Calorimetry (DSC) with moderate-high cooling rates (from − 20 to − 200 °C min−1) in constant cooling rate (isokinetic) conditions and in simplified non-constant cooling rate (non-isokinetic) conditions. Analyses based on the evolution of the mass fraction of solid wax calculated from heat flow (DSC signal) show similar kinetics trend and enthalpy of crystallization for the different isokinetic conditions, but with a significant influence on the supercooling effects. Considering the limits of the classic Avrami kinetics modelling for high aspect ratio crystals and complex mixtures, a semi-empirical modelling approach of non-isokinetic cooling conditions in a differential form is proposed. The modelling shows a good correlation with experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Dorset DL. Crystallography of the polymethylene chain: an inquiry into the structure of waxes. Oxford: Oxford University Press; 2005.

    Google Scholar 

  2. Kané M, Djabourov M, Volle J-L. Rheology and structure of waxy crude oils in quiescent and under shearing conditions. Fuel. 2004. https://doi.org/10.1016/j.fuel.2004.01.017.

    Article  Google Scholar 

  3. Blake AI, Co ED, Marangoni AG. Structure and physical properties of plant wax crystal networks and their relationship to oil binding capacity. J Am Oil Chem Soc. 2014. https://doi.org/10.1007/s11746-014-2435-0.

    Article  Google Scholar 

  4. Blake AI, Marangoni AG. The use of cooling rate to engineer the microstructure and oil binding capacity of wax crystal networks. Food Biophys. 2015. https://doi.org/10.1007/s11483-015-9409-0.

    Article  Google Scholar 

  5. Abdallah DJ, Sirchio SA, Weiss RG. Hexatriacontane organogels. The first determination of the conformation and molecular packing of a low-molecular-mass organogelator in its gelled state. Langmuir. 2000. https://doi.org/10.1021/la000730k.

    Article  Google Scholar 

  6. Hwang H-S, Kim S, Singh M, Winkler-Moser JK, Liu SX. Organogel formation of soybean oil with waxes. J Am Oil Chem Soc. 2012. https://doi.org/10.1007/s11746-011-1953-2.

    Article  Google Scholar 

  7. Abdallah DJ, Weiss RG. Organogels and low molecular mass organic gelators. Adv Mater; 2000. https://doi.org/10.1002/1521-4095(200009)12:17<1237::AID-ADMA1237>3.0.CO;2-B

  8. Baki G, Alexander KS. Introduction to cosmetic formulation and technology. Hoboken: Wiley; 2015.

    Google Scholar 

  9. Venkatesan R, Nagarajan NR, Paso K, Yi Y-B, Sastry AM, Fogler HS. The strength of paraffin gels formed under static and flow conditions. Chem Eng Sci. 2005. https://doi.org/10.1016/j.ces.2005.02.045.

    Article  Google Scholar 

  10. Henaut I, Betro B, Vinay G. Differential scanning calorimetry contribution to a better understanding of the aging of gelled waxy crude oils. Oil Gas Sci Technol. 2019. https://doi.org/10.2516/ogst/2018095.

    Article  Google Scholar 

  11. Kasumu AS, Arumugam S, Mehrotra AK. Effect of cooling rate on the wax precipitation temperature of “waxy” mixtures. Fuel. 2013. https://doi.org/10.1016/j.fuel.2012.09.036.

    Article  Google Scholar 

  12. Ruwoldt J, Kurniawan M, Oschmann H-J. Non-linear dependency of wax appearance temperature on cooling rate. J Pet Sci Eng. 2018. https://doi.org/10.1016/j.petrol.2018.02.011.

    Article  Google Scholar 

  13. Andrade DEV, Marcelino Neto MA, Negrão COR. Non-monotonic response of waxy oil gel strength to cooling rate. Rheol Acta. 2018. https://doi.org/10.1007/s00397-018-1108-6.

    Article  Google Scholar 

  14. Morales-Rueda JA, Dibildox-Alvarado E, Charó-Alonso MA, Weiss RG, Toro-Vazquez JF. Thermo-mechanical properties of candelilla wax and dotriacontane organogels in safflower oil. Eur J Lipid Sci Technol. 2009. https://doi.org/10.1002/ejlt.200810174.

    Article  Google Scholar 

  15. Alvarez-Mitre FM, Morales-Rueda JA, Dibildox-Alvarado E, Charó-Alonso MA, Toro-Vazquez JF. Shearing as a variable to engineer the rheology of candelilla wax organogels. Food Res Inter. 2012. https://doi.org/10.1016/j.foodres.2012.08.025.

    Article  Google Scholar 

  16. Starink MJ. Analysis of aluminium based alloys by calorimetry: quantitative analysis of reactions and reaction kinetics. Inter Mater Rev. 2004. https://doi.org/10.1179/095066004225010532.

    Article  Google Scholar 

  17. Bogoeva-Gaceva G, Janevski A, Grozdanov A. Crystallization and melting behavior of iPP studied by DSC. J Appl Polym Sci. 1998. https://doi.org/10.1002/(SICI)1097-4628(19980118)67:3%3c395::AID-APP2%3e3.0.CO;2-H.

    Article  Google Scholar 

  18. Coccorullo I, Pantani R, Titomanlio G. Crystallization kinetics and solidified structure in iPP under high cooling rates. Polymer. 2003. https://doi.org/10.1016/S0032-3861(02)00762-0.

    Article  Google Scholar 

  19. Menczel JD, Judovits L, Prime RB, Bair HE, Reading M, Swier S. Differential scanning calorimetry. In: Menczel JD, Prime RB, editors. Thermal analysis of polymers: fundamentals and applications. Hoboken: Wiley; 2009. p. 7–239.

    Chapter  Google Scholar 

  20. Cartledge HCY, Baillie CA. Studies of microstructural and mechanical properties of nylon/glass composite Part I The effect of thermal processing on crystallinity, transcrystallinity and crystal phases. J Mater Sci. 1999. https://doi.org/10.1023/A:1004713200894.

    Article  Google Scholar 

  21. Cantor B. Differential scanning calorimetry and the advanced solidification processing of metals and alloys. J Therm Anal. 1994. https://doi.org/10.1007/BF02546740.

    Article  Google Scholar 

  22. Ahmadi Khoshooei M, Fazlollahi F, Maham Y, Hassan A, Pereira-Almao P. A review on the application of differential scanning calorimetry (DSC) to petroleum products: wax crystallization study and structural analysis. J Therm Anal Calorim. 2019. https://doi.org/10.1007/s10973-019-08022-0.

    Article  Google Scholar 

  23. Baltzer Hansen A, Larsen E, Batsberg Pedersen W, Nielsen AB, Rønningsen HP. Wax precipitation from North Sea crude oils. 3. Precipitation and dissolution of wax studied by differential scanning calorimetry. Energy Fuels. 1991. https://doi.org/10.1021/ef00030a021.

    Article  Google Scholar 

  24. Zhao Y, Paso K, Sjöblom J. Thermal behavior and solid fraction dependent gel strength model of waxy oils. J Therm Anal Calorim. 2014. https://doi.org/10.1007/s10973-014-3660-3.

    Article  Google Scholar 

  25. Pan S, Germann N. Thermal and mechanical properties of industrial benchmark lipstick prototypes. Thermochim Act. 2019. https://doi.org/10.1016/j.tca.2019.178332.

    Article  Google Scholar 

  26. Padar S, Jeelani SAK, Windhab EJ. Crystallization kinetics of cocoa fat systems: experiments and modeling. J Am Oil Chem Soc. 2008. https://doi.org/10.1007/s11746-008-1312-0.

    Article  Google Scholar 

  27. Fernandes VA, Müller AJ, Sandoval AJ. Thermal, structural and rheological characteristics of dark chocolate with different compositions. J Food Eng. 2013. https://doi.org/10.1016/j.jfoodeng.2012.12.002.

    Article  Google Scholar 

  28. Paso KG, Senra M, Yi Y, Sastry AM, Fogler HS. Paraffin polydispersity facilitates mechanical gelation. Ind Eng Chem Res. 2005. https://doi.org/10.1021/ie050325u.

    Article  Google Scholar 

  29. Adhvaryu A, Erhan SZ, Perez JM. Wax appearance temperatures of vegetable oils determined by differential scanning calorimetry: effect of triacylglycerol structure and its modification. Thermochim Acta. 2002. https://doi.org/10.1016/S0040-6031(02)00180-6.

    Article  Google Scholar 

  30. Zougari MI, Sopkow T. Introduction to crude oil wax crystallization kinetics: process modeling. Ind Eng Chem Res. 2007. https://doi.org/10.1021/ie061002g.

    Article  Google Scholar 

  31. Avrami M. Kinetics of phase change. I General theory J Chem Phys. 1939. https://doi.org/10.1063/1.1750380.

    Article  Google Scholar 

  32. Marangoni AG. Kinetics of crystal growth using the avrami model and the chemical potential approach. In: Marangoni AG, editor. Kinetic analysis of food systems. New York: Springer; 2017. p. 113–34.

    Chapter  Google Scholar 

  33. Qiao JC, Pelletier JM. Crystallization kinetics in Cu46Zr45Al7Y2 bulk metallic glass by differential scanning calorimetry (DSC). J Non-Cryst Solids. 2011. https://doi.org/10.1016/j.jnoncrysol.2010.12.071.

    Article  Google Scholar 

  34. Nakamura K, Katayama K, Amano T. Some aspects of nonisothermal crystallization of polymers. II. Consideration of the isokinetic condition. J Appl Polym Sci. 1973. https://doi.org/10.1002/app.1973.070170404.

    Article  Google Scholar 

  35. Ozawa T. Kinetics of non-isothermal crystallization. Polymer. 1971. https://doi.org/10.1016/0032-3861(71)90041-3.

    Article  Google Scholar 

  36. Billon N, Barq P, Haudin J. Modelling of the cooling of semi-crystalline polymers during their processing. Inter Polymer Process. 1991. https://doi.org/10.3139/217.910348.

    Article  Google Scholar 

  37. Piorkowska E, Galeski A, Haudin J-M. Critical assessment of overall crystallization kinetics theories and predictions. Prog Polym Sci. 2006. https://doi.org/10.3139/217.910348.

    Article  Google Scholar 

  38. Shepilov MP, Baik DS. Computer simulation of crystallization kinetics for the model with simultaneous nucleation of randomly-oriented ellipsoidal crystals. J Non-Cryst Solids. 1994. https://doi.org/10.1016/0022-3093(94)90350-6.

    Article  Google Scholar 

  39. Blake AI, Marangoni AG. Plant wax crystals display platelet-like morphology. Food Struct. 2015. https://doi.org/10.1016/j.foostr.2015.01.001.

    Article  Google Scholar 

  40. Scheil E. Anlaufzeit der Austenitumwandlung. Archiv für das Eisenhüttenwesen. 1935. https://doi.org/10.1002/srin.193500186.

    Article  Google Scholar 

  41. Chan TW, Isayev AI. Quiescent polymer crystallization: Modelling and measurements. Polym Eng Sci. 1994. https://doi.org/10.1002/pen.760340602.

    Article  Google Scholar 

  42. Batsberg Pedersen W, Baltzer Hansen A, Larsen E, Nielsen AB, Rønningsen HP. Wax precipitation from North Sea crude oils. 2. Solid-phase content as function of temperature determined by pulsed NMR. Energy Fuels. 1991. https://doi.org/10.1021/ef00030a020.

    Article  Google Scholar 

  43. Vanden Poel G, Mathot VBF. High-speed/high performance differential scanning calorimetry (HPer DSC): temperature calibration in the heating and cooling mode and minimization of thermal lag. Thermochim Acta. 2006. https://doi.org/10.1016/j.tca.2006.02.022.

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the financial support provided by Parfums Christian Dior.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Han Wang.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Bellet, M., Boyer, S.A.E. et al. Calorimetry characterization and crystallization modelling of wax-based mixtures under isokinetic and non-isokinetic cooling. J Therm Anal Calorim 147, 14407–14422 (2022). https://doi.org/10.1007/s10973-022-11562-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-022-11562-7

Keywords

Navigation